

INTELART

Programmable Logic

Controller

I4 Series

Release date: 04/2023
Copyright © INTELART 2023
All rights reserved

System Manual

IEC 61131 Compliant
Version 1.4

07/2020

SM Version 1.4 ii I4 Series

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded
according to the degree of danger.

 DANGER

indicates that death or severe personal injury will result if proper precautions are not taken.

 WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

NOTICE

indicates that an unintended result or situation can occur if the relevant information is not taken into account.

TIP

indicates that an additional contextual information about a particular element or subject.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be
used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property
damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific task
in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Intelart products

Note the following:

 WARNING

Intelart products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended or
approved by Intelart. Proper transport, storage, installation, assembly, commissioning, operation and maintenance
are required to ensure that the products operate safely and without any problems. The permissible ambient
conditions must be complied with. The information in the relevant documentation must be observed.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described.
Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this
publication is reviewed regularly and any necessary corrections are included in subsequent editions.

SM Version 1.4 iii I4 Series

Preface

Purpose of the manual

The I4 PLCs is a line of programmable logic controllers (PLCs) that can control a variety of automation applications.
Compact design, low cost, and a powerful instruction set make the I4 PLC a perfect solution for controlling a wide
variety of applications. The I4 models and the Windows-based programming tool give you the flexibility you need to
solve your automation problems.

This manual provides information about installing and programming the I4 PLC and is designed for engineers,
programmers, installers, and electricians who have a general knowledge of programmable logic controllers.

Required basic knowledge

To understand this manual, it is necessary to have a general knowledge of automation and programmable logic
controllers.

Service and support

In addition to our documentation, we offer our technical expertise on the Internet on the customer support forum
(https://www.intelart.ir/forum).

Contact your Intelart distributor or sales office for assistance in answering any technical questions, for training, or for
ordering I4 products. Because your sales representatives are technically trained and have the most specific knowledge
about your operations, process and industry, as well as about the individual Intelart products that you are using, they
can provide the fastest and most efficient answers to any problems you might encounter.

Documentation and information

The I4 PLC system manual provides specific information about the operation, programming and the specifications for
the complete I4 PLC product family.

If you are a first-time user of I4 PLC, you should read the entire I4 Programmable Controller System Manual. If you are
an experienced user, refer to the table of contents or index to find specific information.

The other appendices provide additional reference information, such as descriptions of the error codes, descriptions of
the Special Memory (S) area, part numbers for ordering I4 PLC family equipment.

An Overview of IEC 61131-3

The International Electrotechnical Commission (IEC) is the international body that sets global standards for electrical,
electronic, and other related technologies.

Various region-specific technology certification bodies derive their standards
from IEC. IEC 61131 is the standard for programmable controllers.

It has ten parts covering general information, equipment requirement, user
guidelines, communication protocols, safety, fuzzy control programming, and
many other aspects regarding programmable controllers.

The third part of IEC 61131 defines the programming languages used for
programmable controllers. It was published in December 1993 by IEC, and
the current edition (third edition) was released in 2013.

Before IEC 61131-3, different vendors had various programming languages
and interoperability was nonexistent. An engineer who knew how to program
with one vendor's software had to learn new programming of another vendor
to work with the PLC. The different software life-cycle stages are
specification, design, implementation, testing, installation, and maintenance,
which were heterogeneous for different vendors.

61131-3

SM Version 1.4 iv I4 Series

IEC 61131-3 defined a minimum set, the basic programming elements, syntactic and semantic rules for a minimum set,
the basic programming elements, syntactic and semantic rules for a programming language used for programmable
controllers. The advantages of IEC 61131-3 are:

• Improved interoperability of programming languages

• Higher programming efficiency

• Reduced errors

• Improved reusability

• Modularization

• Implementation of modern software techniques

• Increased user efficiency

This made IEC 61131-3 widely accepted by users and vendors globally and has become the standard for programming
and configuring industrial control devices. The standards are also evolving according to the needs of the industry and
inefficiencies in earlier editions. A noted enhancement in the subsequent editions is the addition and improvement of
support for Object-Oriented Programming (OOP), including classes, methods, interfaces, and namespaces.

IEC 61131-3 defines the basic structure and elements of all programming languages for programming controllers. This
allows PLCs to be programmed using multiple languages. Note that software used to program PLCs from one vendor
cannot typically be used to program PLCs from another vendor.

This is due to the differences in addressing schemes, task scan rates, array sizes, string lengths, and file formats.
Users can utilize the five programming languages to program PLCs. The features of IEC 61131-3 that aids this are
mentioned below.

Standard Data Types

IEC defined a standard set of data types with uniform across all the programming software compliant with IEC 61131-
3. The standard has defined how to interpret the contents of the variable. Only one type of operation is allowed for a
particular data type. For example, mathematical operations can be done only on numerical data types and not on bit-
patterns.

Derived Data Types

High-level, PC-oriented programming languages offer derived data types that users can define according to their
needs. This gives more flexibility and versatility to programming languages. IEC 61131-3 supports derived data types
like Fields and structures that allow for efficient organization and grouping of data. This allows for the use of data in a
secure manner.

Program Organization Units (POU)

Functions and function blocks are the most common POUs for programming. Recurrent tasks can be bundled as
functions or function blocks that can be called when they are required.

This division of sub-tasks of the whole program makes programming and verifying written programs easier. It will be
legible and coherent, opposed to the mess when such POUs are not available while programming.

Data Encapsulation

The third edition of IEC 61131-3 supports object-oriented programming. This is enabled by the capability of data
encapsulation. It is the practice of bundling data with the functions that use the data. Classes are the most common
use case of data encapsulation, widely used in high-level object-oriented computer languages.

With this, all the POUs have only local data and cannot be manipulated by other parts of the program. This avoids
overwriting data errors.

Data-Exchange Interfaces

It’s necessary to have POUs and data encapsulation to have a robust programming language and define the data-
exchange interfaces. The data types and the scope of each data type in different POUs must be well defined. IEC
61131-3 has standardized the data exchange interfaces for programming languages for logic controllers.

Symbolic Functions & Function Blocks

SM Version 1.4 v I4 Series

Using the IEC 61131-3 standards, programs can be written in a way that is address and module independent. This
enables writing functions and function blocks that are independent of target systems. The logic takes precedence over
the specific implementation. This allows users to write reusable programs that can be appropriated for various
systems.

Standard Syntax and Semantics

Syntaxes and semantics make up a high-level computer language. IEC 61131-3 has standardized them for all
programmable controller languages. The commands and instructions would be the same across various programming
languages.

This reduces the training required by engineers if they have to work with PLCs from multiple vendors. This additional
feature enhances the reusability of the programs.

Language Extensions

IEC 61131-3 has no intention of reducing the development of new PLC languages but only to standardize the
languages. The standard allows proprietary function blocks to be programmed in non-IEC 61131-3 languages such as
C++.

There are PLC vendors and dedicated software vendors that write reusable programs in higher-level PC-oriented
languages. These are then ported to use with a specific device. PLC vendors can also enhance and provide
extensions to the programming languages that are IEC 61131-3 compliant.

All these features help with using multiple languages for the same PLC according to the comfort of the user.

This standard helped unify, to an extent, the heterogeneous and fragmented programming landscape for PLCs.

TIP

All I4 PLCs and their programming software is designed based on IEC61131 standard. For more information you
can refer the IEC 6131-3 documentation.

SM Version 1.4 vi I4 Series

Table of Contents
1 Product Overview.. 1

1. I4 PLC ... 2

2. I4 PLC Expansion Modules ... 3

3. Intelart Studio Programming Package .. 4

3.1 Computer Requirements .. 4

3.2 Installing Intelart Studio .. 4

4. Communications Options .. 4

2 Getting Started .. 5

1. Connecting the I4 PLC .. 6

1.1 Connecting Power to the I4 PLC .. 6

1.2 Connecting the Programming Cable ... 6

1.3 Starting Intelart Studio .. 6

1.4 Establishing Communications with the I4 PLC ... 7

2. Creating a Sample Program ... 8

2.1 Opening the Program Editor ... 10

2.2 How to Program .. 10

2.3 Saving the Sample Project ... 11

3. Downloading the Sample Program ... 12

4. Placing the I4 PLC in RUN Mode .. 12

5. Easy-to-use tools .. 13

5.1 Inserting instructions into your user program .. 13

5.2 Inserting Instructions from the “Quick Access” Toolbar .. 14

5.3 Adding inputs or outputs to a LAD or FBD instruction .. 14

5.4 Selecting a version for an instruction .. 15

5.5 Modifying the appearance and configuration of Intelart Studio ... 16

5.6 Changing the operating mode of the CPU .. 16

5.7 Modifying the Hardware Configuration of CPU and Expansion Modules .. 17

5.8 Mapping Module Tags .. 17

5.9 Importing license files ... 18

3 Installing the I4 PLC .. 20

1. Guidelines for Installing I4 PLC Devices ... 21

1.1 Separate the I4 PLC Devices from Heat, High Voltage, and Electrical Noise ... 21

1.2 Provide Adequate Clearance for Cooling and Wiring ... 21

2. Installing and removing the I4 PLC Modules ... 22

2.1 Prerequisites... 22

2.2 Mounting Dimensions ... 22

2.3 Installing a CPU or Expansion Module ... 23

2.4 Removing a CPU or Expansion Module ... 23

3. Guidelines for Grounding and Wiring .. 24

3.1 Prerequisites... 24

3.2 Guidelines for Isolation ... 24

3.3 Guidelines for Grounding the I4 PLC .. 24

3.4 Guidelines for Wiring the I4 PLC .. 25

SM Version 1.4 vii I4 Series

3.5 Guidelines for Inductive Loads ... 25

3.6 Guidelines for Lamp Loads ... 26

4 PLC Concepts ... 28

1. Execution of the user program .. 28

1.1 Operating modes of the CPU.. 30

1.2 Processing the scan cycle in RUN mode .. 31

1.3 Organization blocks (OBs) .. 32

1.4 CPU memory .. 34

1.5 Time of day clock .. 34

1.6 Configuring the outputs on a RUN-to-STOP transition ... 34

2. Data storage, memory areas, I/O and addressing .. 36

2.1 Accessing the data of the I4 PLC ... 36

2.2 Configuring the I/O in the CPU and I/O modules .. 38

3. Processing of analog values ... 40

4. Data types ... 41

4.1 Bool, Byte, Word, DWord and LWord data types.. 42

4.2 Integer data types ... 42

4.3 Floating-point real data types ... 43

4.4 Time and Date data types .. 43

4.5 Character and String data types ... 44

4.6 Array data type ... 46

4.7 Data structure data type ... 46

4.8 User data type .. 46

4.9 Pointer data types ... 47

5 Device Configuration ... 49

1. Inserting a CPU ... 51

2. Adding modules to the configuration ... 52

3. Configuring the operation of the CPU ... 52

4. Configuring the parameters of the modules .. 53

4.1 Assigning Internet Protocol (IP) addresses .. 54

6 Programming Concepts .. 57

1. Guidelines for designing a PLC system .. 58

2. Structuring your user program .. 59

2.1 Choosing the type of structure for your user program .. 59

3. Using blocks to structure your program .. 60

3.1 Organization block (OB) ... 61

3.2 Function (FC) .. 62

3.3 Function block (FB) .. 62

4. Understanding data consistency ... 64

5. Programming language ... 64

5.1 Ladder logic (LAD) .. 64

5.2 Function Block Diagram (FBD) ... 65

5.3 EN and ENO for LAD and FBD ... 65

6. Protection .. 66

SM Version 1.4 viii I4 Series

6.1 Access protection for the CPU.. 66

6.2 Program blocks protection .. 67

6.3 Copy protection .. 67

6.4 Downloading a compiler binary output file .. 68

7. Downloading the elements of your program ... 68

7.1 Transfer Program to SD Card ... 69

8. Uploading from the CPU ... 69

9. Monitoring and testing the program .. 69

9.1 Monitor and modify data in the CPU ... 69

9.2 Watch and force list .. 70

9.3 Cross reference to show usage .. 70

9.4 Call structure to examine the calling hierarchy ... 70

7 Basic Instructions .. 71

1. Bit logic ... 74

1.1 Bit logic contacts and coils ... 74

1.2 Set and reset instructions ... 76

1.3 Positive and negative edge instructions ... 77

2. Word logic operations ... 79

2.1 AND, OR, and XOR instructions ... 79

2.2 Invert instruction ... 79

2.3 Shift and Rotate .. 80

2.4 Rotate instructions .. 80

3. Comparison... 81

3.1 Compare ... 81

3.2 In-range and Out-of-range instructions ... 82

4. Math .. 82

4.1 Add, subtract, multiply and divide instructions .. 82

4.2 Modulo instruction .. 83

General exponentiation instruction.. 84

4.3 Absolute value instruction ... 84

4.4 Increment and decrement instructions .. 84

4.5 Floating-point math instructions .. 85

5. Timer and Counter .. 85

5.1 Timers .. 85

5.2 Counters ... 89

6. Moving and conversion ... 92

6.1 Move instructions .. 92

6.2 Accessing data by array indexing ... 93

6.3 Convert instruction .. 93

6.4 BCD conversion instructions... 94

6.5 Round, ceiling, floor and truncate instructions .. 94

6.6 Swap instruction ... 95

6.7 Serialize instruction .. 96

6.8 Deserialize instruction .. 96

SM Version 1.4 ix I4 Series

7. Program Control .. 97

7.1 FOR statement ... 97

7.2 WHILE statement ... 98

7.3 IF statement.. 98

7.4 RET execution control instruction ... 99

8. Selection ... 100

8.1 Select ... 100

8.2 Get maximum and minimum ... 101

8.3 Limit instruction ... 101

8.4 Multiplex instruction .. 102

8.5 Check for nullity .. 102

8.6 Check for array ... 102

8.7 Get array length .. 103

9. Time .. 103

9.1 Time add and subtract .. 103

9.2 Time multiplication and division .. 104

9.3 Time of day addition and subtraction time .. 104

9.4 Date addition and subtraction time ... 105

9.5 Date subtraction ... 105

9.6 Time of day subtraction .. 106

9.7 Date and time subtraction ... 106

9.8 Time concatenation .. 107

10. Character and string ... 107

10.1 String data overview ... 107

10.2 String operation instructions ... 107

8 System Instructions ... 113

1. Memory management ... 114

1.1 RWW_NVMEM instruction.. 114

2. System Time Management ... 114

2.1 GET_SYS_DT instruction ... 114

2.2 SET_SYS_DT instruction ... 115

2.3 SYS_TICK instruction ... 115

3. Comm ports management .. 115

3.1 SET_SYS_IP .. 115

9 Communication Instructions .. 117

1. RS-232 interface ... 118

2. RS-485 interface ... 118

2.1 Bias resistors .. 118

2.2 Termination resistors .. 118

2.3 Shielding and grounding considerations ... 118

2.4 Cable requirements .. 119

3. Controller Area Network (CAN) interface .. 119

4. Ethernet interface .. 119

4.1 Modbus TCP/IP .. 120

SM Version 1.4 x I4 Series

4.2 EtherCAT .. 120

4.3 Ethernet/IP.. 120

4.4 PROFINET ... 120

5. Programming instructions ... 120

5.1 Serial .. 120

6. Modbus communication .. 123

6.1 Overview of Modbus RTU and TCP communication .. 123

6.2 Modbus RTU .. 124

6.3 Modbus TCP... 129

10 IEC 61131-3 Solutions .. 134

1. CMD_MONITOR instruction.. 135

2. STACK_INT FB instruction ... 135

3. LAG1 FB instruction .. 136

4. DELAY FB instruction ... 136

5. AVERAGE FB instruction .. 137

6. INTEGRAL FB instruction ... 137

7. DERIVATIVE FB instruction .. 138

8. HYSTERESIS FB instruction .. 138

9. LIMITS_ALARM FB instruction ... 139

10. ANALOG_MONITOR FB instruction ... 139

11. IEC_PID FB instruction ... 140

12. RAMP FB instruction ... 141

13. TRANSFER FB instruction .. 141

11 Monitor and Control Instructions ... 143

1. Designing Digital Controllers ... 144

1.1 Process Characteristics and Control .. 144

1.2 Feedforward Control ... 147

1.3 Multi-Loop Controls .. 147

1.4 Structure and Mode of Operation of the PID Control .. 150

1.5 Signal Processing in the Setpoint Branch ... 153

1.6 Signal Processing in the PID Controller .. 153

2. Configuring and Starting the Standard PID Control .. 154

2.1 Defining the Control Task ... 154

2.2 Type of Actuator ... 155

2.3 Generating the Control Project Configuration ... 156

2.4 The Sampling Time CYCLE.. 157

2.5 How the Standard PID Control is Called ... 158

2.6 Range of Values and Signal Adaptation (Normalization) .. 158

3. Signal Processing in the Setpoint/Process Variable Channels and PID Controller Functions 158

3.1 Average Value Generator (AVG_GEN) .. 158

3.2 Rate of Change Alarm Generator (CHG_ALM) .. 159

3.3 Cycle Time Calculator (CYC_TM) .. 160

3.4 Filtering Signal Function (DEADBAND) .. 161

3.5 Unsigned Int to Signed Int Encoder (ENCODER) ... 162

SM Version 1.4 xi I4 Series

3.6 First In First Out (FIFO) .. 162

3.7 Asymmetric Hysteresis Generator (HYST_GEN) ... 163

3.8 Damping the Process Variable (LAG1_GEN) ... 163

3.9 Monitoring a Process Variable Limits (LIM_ALM) ... 165

3.10 Loop Scheduler (LP_SCHED) .. 166

3.11 Manual Value Generator (MAN_GEN) ... 168

3.12 Normalize (NORM) ... 169

3.13 Standard PID (PID_STD) ... 170

3.14 PWM Signal Generator (PWM_GEN)... 175

3.15 PID Tuner by Relay Method (RELAY_TUNE) .. 176

3.16 Ramp Soak (RMP_GEN) ... 177

3.17 Limiting the Rate of Change of a Value (ROC_GEN) ... 183

3.18 Scale (SCALE) ... 184

3.19 Gain Scheduling (SCH_GEN) .. 184

3.20 Scale With Parameters (SCP_NORM) ... 185

3.21 PID Self Tuner (SELF_TUNE) .. 186

3.22 Extracting the Square Root Normalization (SQRT_NORM) ... 190

3.23 Stack Collection (STACK) .. 191

3.24 Three Step Signal Generator (THREE_STEP_GEN) ... 191

3.25 Weighing System (WEIGH) .. 192

12 Technology Instructions .. 193

1. Temperature Control ... 194

1.1 Temperature Control by TEMP_CONTROLLER .. 194

1.2 Temperature Control Optimizer (TEMP_OPT).. 197

13 Online and Diagnostic Tools ... 198

1. Status LEDs .. 199

1.1 Status LEDs on a CPU ... 199

2. Going online and connecting to a CPU ... 199

3. Displaying the status of the CPU .. 200

4. Setting the date and time of day ... 200

5. Displaying or setting CPU configuration .. 200

6. Resetting to factory settings .. 200

6.1 Procedure ... 201

6.2 Result ... 201

7. CPU operator toolbar for the online CPU .. 201

8. Monitoring and modifying values in the CPU .. 201

8.1 Going online to monitor the values in the CPU ... 201

8.2 Displaying status in the program editor .. 202

8.3 Using a watch table to monitor and modify values in the CPU ... 202

9. Recovery from a lost password ... 203

10. Runtime Exceptions .. 203

11. CPU registers.. 205

Product Overview

SM Version 1.4 1 I4 Series

1 Product Overview

The I4 PLC series can control a wide variety of devices to support your automation needs.

The I4 PLC monitors inputs and changes outputs as controlled by the user program, which can include Boolean
logic, counting, timing, complex math operations, and communications with other intelligent devices. The
compact design, flexible configuration, and powerful instruction set combine to make the I4 PLC a perfect
solution for controlling a wide variety of applications.

Product Overview

SM Version 1.4 2 I4 Series

1. I4 PLC

The I4 PLC combines a microprocessor, an integrated power supply, input circuits, and output circuits in a
compact housing to create a powerful PLC. See Figure 1-1. After you have downloaded your program, the I4
PLC contains the logic required to monitor and control the input and output devices in your application.

Figure 1-1 I4 PLC

Intelart provides different I4 CPU models with a diversity of features and capabilities that help you create effective
solutions for your varied applications. Table 1-1 briefly compares some of the features of the CPU. For detailed
information about a specific CPU, see Appendix A.

Table 1-1 Comparison of the I4 CPU Models

Feature CP300 CP301 CP310

Physical size (mm) 90 x 96 x 61 121 x 96 x 61

Load memory 4 MB

Application memory 80 KB 160 KB

Retentive memory 72 bytes 4 KB

Memory

• M

• I

• Q

• G

8 KB
2 KB
2 KB
8 KB

32 KB
8 KB
8 KB
32 KB

Permanent Memory 16 KB

Memory backup 5 Years typical

Supported modules 31 63

I/O integrated in CPU Yes, 6 DI, 8 DQ Yes, 6 DI, 4 DQ Yes, 13 DI, 16 DQ

Fast counters 3

PWM 3, 1 KHz 0 3, 1 KHz

Pulse train 3 0 3

Frequency out 3 0 3

Analog POTs 2

Real-time clock Built-in

Communications ports 1 RS-232, 1 RS-485 1 RS-232, 1 RS-485,
1 Ethernet

Programming port USB Ethernet

Floating-point math Yes

Processor Arm, Cortex M4 Arm, Cortex M7

Bit operation 10 µs 4 µs

CPU startup modes Cold start, Warm start

Configuration / programming

Software

Intelart Studio

Clip for installation on a standard (DIN) rail

I/O LEDs

Status LEDs
Power

Run
Fault

Warm start EN switch door

Communications port

Terminal connector

Access door:

• Mode selector switch (RUN/STOP)

• Analog adjustment potentiometers

• Expansion port

Product Overview

SM Version 1.4 3 I4 Series

2. I4 PLC Expansion Modules

To better solve your application requirements, the I4 PLC family includes a wide variety of expansion modules.
You can use these expansion modules to add additional functionality to the I4 PLC. Table 1-2 provides a list of
the expansion modules that are currently available. For detailed information about a specific module, see
Appendix A.

Table 1-2 I4 PLC Expansion Modules

Module Inputs Outputs

Digital Modules

IM300 8 (Sink/Source) 8 (NPN)

IM301 8 (Sink/Source) 4 (Relay)

IM310 16 (Sink/Source) 0

IM320 0 16 (NPN)

IM330 0 8 (Relay)

Analog Modules

IM341 2 (0-24 mA, 0-10 V) 2 (0-24 mA, 0-10 V)

IM342 4 (0-24 mA, 0-10 V) 0

IM350 1 (DC, RTD, RES, Thermocouple) 1 (0-24 mA, 0-10 V)

IM351 2 (DC, RTD, RES, Thermocouple) 2 (0-24 mA, 0-10 V)

IM360 1 (Loadcell) 1 (0-24 mA, 0-10 V)

IM361 2 (Loadcell) 1 (0-24 mA, 0-10 V)

Product Overview

SM Version 1.4 4 I4 Series

3. Intelart Studio Programming Package

The Intelart Studio programming package provides a user-friendly environment to develop, edit, and monitor the
logic needed to control your application. Intelart Studio provides editors for convenience and efficiency in
developing the control program for your application. To help you find the information you need, Intelart Studio
provides an extensive online help forum and technical support.

3.1 Computer Requirements

Your computer or programming device should meet the following minimum requirements:

• Operating system: Windows 7 or higher

• Processor type: Pentium 4 or higher

• At least 500 MB of free hard disk space

• At least 1 GB of free RAM space

Figure 1-2 Intelart Studio

3.2 Installing Intelart Studio

You can download setup file from the following URL:

https://intelart.ir/products/software-products/intelart-studio

After running the setup file, the installation wizard starts automatically and prompts you through the installation
process. Note that some prerequisites may be installed based on your operating system installed runtime
packages.

4. Communications Options

Intelart provides the most common and economical method of connecting your computer to the I4 PLC. Based on
the type of the CPU you can use an ethernet cable or a USB B 2.0 cable.

https://intelart.ir/products/software-products/intelart-studio

Getting Started

SM Version 1.4 5 I4 Series

2 Getting Started

Intelart Studio makes it easy for you to program your I4 PLC. In just a few short steps using a simple example,
you can learn how to connect, program, and run your I4 PLC.

All you need for this example is a USB (or ethernet) cable, an I4 PLC, and a programming device running the
Intelart Studio programming software.

Getting Started

SM Version 1.4 6 I4 Series

1. Connecting the I4 PLC

Connecting your I4 PLC is easy. For this example, you only need to connect power to your I4 PLC and then
connect the communications cable (USB or Ethernet) between your programming device and the I4 PLC.

1.1 Connecting Power to the I4 PLC

The first step is to connect the I4 PLC to a power source. Figure 2-1 shows the wiring connections for a DC
model of the I4 PLC.

Before you install or remove any electrical device, ensure that the power to that equipment has been turned off.
Always follow appropriate safety precautions and ensure that power to the I4 PLC is disabled before attempting
to install or remove the I4 PLC.

 WARNING

Attempts to install or wire the I4 PLC or related equipment with power applied could cause electric shock or
faulty operation of equipment. Failure to disable all power to the I4 PLC and related equipment during
installation or removal procedures could result in death or serious injury to personnel, and/or damage to
equipment.
Always follow appropriate safety precautions and ensure that power to the I4 PLC is disabled before
attempting to install or remove the I4 PLC or related equipment.

Figure 2-1 Connecting Power to the I4 PLC

1.2 Connecting the Programming Cable

According to its structure, each CPU can be connected to a computer with one of the common cables such as
USB or ethernet. To know the type of program cable of your device, refer to Table 1-1 or specific technical sheet
of that device.

1.3 Starting Intelart Studio

Click on the Intelart Studio icon and then Create New Plant button to create a new project. Figure 2-4 shows a
new project.

Notice the Plant Explorer. You can use the icons on the plant explorer to open elements of the Intelart Studio
project.

Click on the Devices & Networks in the plant explorer to display the plant devices. You use this editor to manage
all devices and set up the communications for Intelart Studio.

+

0V 24V

Getting Started

SM Version 1.4 7 I4 Series

Figure 2-2 Start Page

Figure 2-3 New Plant Dialog

1.4 Establishing Communications with the I4 PLC

Click on the program port (PG) on the device element in the Devices & Networks editor. By selecting the PG port,
its configuration appears in Properties pane. after you set the PG parameters (IP or COM port name) with the
device, you are ready to Go Online to device. If Intelart Studio does not find your I4 PLC, a Programmer
Configuration dialog will be appeared in order to change the PG port parameters or search for available devices
on a network. If you are using an Ethernet port for programming, then a dialog with IP setting field and search
network tool will be appeared. For USB ports you must know the COM port name and select a COM port from
available detected connected COM ports from dialog.

Creating a New Plant

Opening a currently
created plant

Edited Plants History

Getting Started

SM Version 1.4 8 I4 Series

Figure 2-4 New Intelart Studio Project

Figure 2-5 Programmer Configuration dialog

2. Creating a Sample Program

Entering this example of a control program will help you understand how easy it is to use Intelart Studio. This
program uses six instructions in three networks to create a very simple, self-starting timer that resets itself.

For this example, you use the Ladder (LAD) editor to enter the instructions for the program. The following
example shows the complete program in both LAD and Function Block Diagram (FBD). The timing diagram
shows the operation of the program.

Plant Explorer

Properties

Device

Program Port

PG Configurations

Getting Started

SM Version 1.4 9 I4 Series

Timing Diagram

0.6s0.4s

Current ET = 1000ms

Current ET = 400ms

IEC_Timer.ET

IEC_Timer.Q

Q0.0.0

Getting Started

SM Version 1.4 10 I4 Series

2.1 Opening the Program Editor

Figure 2-6 A ladder program block

Double-click on a Program Block icon in plant explorer tree to open the program editor. See Figure 2-6.

Notice the catalog pane and the program editor. You use the catalog to insert the programming instructions into
the networks of the program editor by dragging and dropping the instructions from the catalog to the networks or
by double click on an instruction to place it on current editing network. When a network goes to editing mode, its
background gets highlight in order to distinguish the current editing network.

The toolbar icons provide shortcuts to the common instructions in catalog.

After you enter and save the program, you can download the program to the I4 PLC.

2.2 How to Program

When #IEC_Timer.Q is off (0), this contact turns on and provides power flow to start the timer. To enter the
contact for #IEC_Timer.Q:

1- In the plant explorer, double-click on the Main program block in the Program Blocks folder in order to
load its editor.

2- Either double-click the Bit Logic icon in the catalog or click on the triangle sign (►) to display the bit
logic instructions.

3- Select the Normally Closed contact.

4- Hold down the left mouse button and drag the contact onto the first cell of network.

5- Double-click on the “???” above the contact and enter the following tag: #IEC_Timer.Q

6- Press the Enter key to submit the tag for the contact.

To enter the timer instruction for TON:

1- Create a TON tag named “IEC_Timer “in the tag list in the top area of the program editor.

2- Double-click the Timer & Counter icon in catalog to display the timer instructions.

3- Select the TON (On-Delay Timer).

4- Hold down the left mouse button and drag the timer onto the next cell in network.

5- Click on the “???” above the timer box (Instance) and enter the following created tag name in step 1:
IEC_Timer

Catalog

Program Editor

Program Network

Quick Access
Toolbar

Tag Definitions

Getting Started

SM Version 1.4 11 I4 Series

6- Press the Enter key or click outside the editing box to submit the timer instance name and the double
click on the PT input of the timer in order to set the preset time.

7- Enter the following value for the preset time (PT): T#1000ms

8- Press the Enter key to submit the value.

When the timer elapsed time (ET) for IEC_Timer is greater than 400 milliseconds, (or 0.4 seconds), the contact
provides power flow to turn on output DQ0 of the I4 PLC. To enter the Compare instruction:

1- Double-click the Comparison icon to display the compare instructions. Select the > instruction (Greater
Than).

2- Hold down the left mouse button and drag the compare instruction onto the second row of network.

3- Click on the contact in order to select it. Notice the properties pane. You can customize some properties
for any selected element in all editors. Change the OperationDataType in the properties pane to Time.

4- Double-click on the “???” above the contact and enter the elapsed time for the timer: #IEC_Timer.ET.

5- Press the Enter key to submit the timer instance internal tag and Double-click on the “???” below the
contact.

6- Enter the following value to be compared with the timer value: T#400ms

7- Press the enter key to submit the value.

To enter the instruction for turning on output DQ0:

1- Double-click the Bit Logic icon to display the bit logic instructions and select the output coil.

2- Hold down the left mouse button and drag the coil onto the next network.

3- Double-click on the “???” above the coil and enter the following address: %Q0.0.0

4- Press the Enter key to enter the tag for the coil. If a tag with the above address already exists, the editor
will assign that tag to the argument of the instruction elsewhere it will create a tag with the specified
address and then assigns the created tag to the instruction argument.

When the timer reaches the preset value (ET=1000ms) and turns the timer bit on, the contact for IEC_Timer
turns on. Because the timer is enabled by a Normally Closed contact for #IEC_Timer.Q, changing the state of
#IEC_Timer.Q from off (0) to on (1) resets the timer.

2.3 Saving the Sample Project

After entering the set of instructions, you have finished entering the program. When you save the program, you
create a new project file that includes the I4 PLC CPU type and other parameters. A file with the “.bak” extension
will be created next to the saved file contains the previous state of the created plant from last save.

 To save a currently opened plant in another place:

1- Select the File > Save As menu command from the menu bar.

2- Choose one of the two saving methods.

3- Click OK to save the plant.

Figure 2-7 Saving as the Example Program

TIP

You can make a backup of current state of the editing plant by File > Make Backup or press Ctrl+B
simultaneously.

After saving the project, you can download the program to the I4 PLC.

Getting Started

SM Version 1.4 12 I4 Series

3. Downloading the Sample Program

TIP

Each Intelart Studio project is associated with a CPU type. If the target device type does not match the CPU to
which you are connected, Intelart Studio indicates a mismatch message in Output pane.

1- Click on the Go Online toolbar button or press Ctrl+K simultaneously in order to connect the device. See
figure 2-8.

2- Click the Compile and Download icon on the toolbar or select the relevant menu command in the Device
menu or press F6 to compile the current device and download the compiled program.

If your I4 PLC is in RUN mode, a dialog box prompts you to place the I4 PLC in STOP mode. Click Yes to place
the I4 PLC into STOP mode.

Figure 2-8 Go Online toolbar button

4. Placing the I4 PLC in RUN Mode

For Intelart Studio to place the I4 PLC CPU in RUN mode, the mode switch of the I4 PLC will be override by the
Intelart Studio. When you place the I4 PLC in RUN mode, the I4 PLC executes the program:

1- Click the Warm Start (or Cold Start) icon on the toolbar or select the Device > Warm Start Device menu
command or press F5.

2- Click OK in the dialog to change the operating mode of the I4 PLC.

When the I4 PLC goes to RUN mode, the output LED for DQ0 turns on and off as the I4 PLC executes the
program.

Congratulations! You have just completed your first I4 PLC program.

You can monitor the program by selecting the Monitor Continuously toolbar button in each program editor.

Intelart Studio displays the values for the instructions. To stop the program, place the I4 PLC in STOP mode by
clicking the Stop toolbar button or by selecting the Device > Stop Device menu command or press Shift+F5.

 WARNING

When you disconnect the computer from device, its operating mode will be changed to the selected switch
state.

Getting Started

SM Version 1.4 13 I4 Series

5. Easy-to-use tools

5.1 Inserting instructions into your user program

Intelart Studio provides a Catalog pane that brings up relevant elements when an editor opens. In program editor
the instructions are grouped according to their functionality.
To create your program, you drag instructions from the catalog pane onto a network.

Figure 2-9 Catalog Pane

Figure 2-10 Dragging an Instruction on a LAD Network

Getting Started

SM Version 1.4 14 I4 Series

5.2 Inserting Instructions from the “Quick Access” Toolbar

Intelart Studio provides a “Quick Access” toolbar to give you quick access to the instructions that frequently use
in programming. Simply click the icon for the instruction to insert it into your network!

Figure 2-11 Quick Access Toolbar

5.3 Adding inputs or outputs to a LAD or FBD instruction

Some of the instructions allow you to create additional inputs or outputs.

To add or remove last input or output, select that instruction by mouse then click the "▴" or "▾" icon in the
Properties pane. You can also specify the count by entering a number in the relevant editing box.

Figure 2-12 Increase or Decrease Inputs or Outputs of a Specific Instruction

Getting Started

SM Version 1.4 15 I4 Series

5.4 Selecting a version for an instruction

The development and release cycles for certain sets of instructions (such as Modbus, PID and motion) have
created multiple released versions for these instructions. Also, some instructions have multiple functions. To help
ensure compatibility and migration with older projects, or use of another functionality of an instruction Intelart
Studio allows you to choose which version of instruction to insert into your user program.

Click the icon on the instruction Catalog to enable the version selection box of the instruction. To change the
version of the instruction, select the appropriate version from the drop-down list.

Figure 2-13 Choosing different version of an Instruction

Getting Started

SM Version 1.4 16 I4 Series

5.5 Modifying the appearance and configuration of Intelart Studio

You can select a variety of settings, such as the appearance of the interface, or other settings for more
customization of your work bench.

Select the “ Options “ command from the "Tools" menu to change these settings.

Figure 2-14 Options Dialog

Figure 2-15 Dark Theme Applied to Intelart Studio

5.6 Changing the operating mode of the CPU

Use the “Warm Start” (or “Cold Start”) and “Stop” toolbar buttons to change the operating mode of the CPU.

Getting Started

SM Version 1.4 17 I4 Series

When you configure the CPU in the device configuration, you configure the start-up behavior in the “Online &
Diagnostic” of the CPU.

The “Online and diagnostics” also provides an operator panel for changing the operating mode of the online CPU.
To use the CPU operator panel, you must be connected online to the CPU. The “Status” task card displays an
operator panel that shows the operating mode of the online CPU. The operator panel also allows you to change
the operating mode of the online CPU or other system configurations such as password or Emergency Stop
trigger. Also, you can change RTC or upgrade the firmware of device by this panel.

5.7 Modifying the Hardware Configuration of CPU and Expansion Modules

Double-click “Device Configuration” in plant explorer then you see a schematic of CPU and its expansion
modules. By clicking on a module, its configuration parameters appear in Properties pane.

Figure 2-16 Device Configuration Editor

By dragging and dropping the expansion modules from the catalog to the rail or by double click on an expansion
module to place it on the current rail.

5.8 Mapping Module Tags

When you install a CPU or an expansion module, its hardware tags will be accessible by double-click on the
module schematic in “Device Configuration” editor or by finding it in “Local Modules” folder in Plant Explorer pane
and double-click on it. You should do the following:

1- Select all tags you need in the list

2- Click on “Map Tags” toolbar button

3- Select an external tag table in the dialog in order to place the mapped tags

4- Click on Ok to Intelart Studio create the selected tags in the list

Properties Pane

Catalog Pane

Plant Explorer Pane

Getting Started

SM Version 1.4 18 I4 Series

Figure 2-17 A module tags list

Figure 2-18 Created tags in the external tag table

NOTICE

Addressing of I and Q area tags is a bit different from M area tags. All I and Q area tags address starts by a
number that indicates the physical address of that area.

5.9 Importing license files

You can include license files (.ialic) in license manager by following steps:

1- Open License Manager in Tools menu.

2- In the opened dialog click on “Import License File”
button in toolbar.

3- Select the file and then press “Close” button.

Getting Started

SM Version 1.4 19 I4 Series

Installing the I4 PLC

SM Version 1.4 20 I4 Series

3 Installing the I4 PLC

The I4 PLC equipment is designed to be easy to install. You can use the mounting holes to attach the modules to
a panel, or you can use the built-in clips to mount the modules onto a standard (DIN) rail. The small size of the I4
PLC allows you to make efficient use of space.

This chapter provides guidelines for installing and wiring your I4 PLC system.

Installing the I4 PLC

SM Version 1.4 21 I4 Series

1. Guidelines for Installing I4 PLC Devices

You can install an I4 PLC either on a panel or on a standard rail, and you can orient the I4 PLC either horizontally
or vertically.

 WARNING

The I4 PLC devices are Open Type Controllers. It is required that you install the I4 PLC in a housing, cabinet,
or electric control room. Entry to the housing, cabinet, or electric control room should be limited to authorized
personnel.
Failure to follow these installation requirements could result in death or serious injury to personnel, and/or
damage to equipment.
Always follow these requirements when installing I4 PLC devices.

1.1 Separate the I4 PLC Devices from Heat, High Voltage, and Electrical Noise

As a general rule for laying out the devices of your system, always separate the devices that generate high
voltage and high electrical noise from the low-voltage, logic-type devices such as the I4 PLC.

When configuring the layout of the I4 PLC inside your panel, consider the heat-generating devices and locate the
electronic-type devices in the cooler areas of your cabinet. Operating any electronic device in a high-temperature
environment will reduce the time to failure.

Consider also the routing of the wiring for the devices in the panel. Avoid placing low voltage signal wires and
communications cables in the same tray with AC power wiring and high-energy, rapidly-switched DC wiring.

1.2 Provide Adequate Clearance for Cooling and Wiring

I4 PLC devices are designed for natural convection cooling. For proper cooling, you must provide a clearance of
at least 25 mm above and below the devices. Also, allow at least 75 mm of depth.

 WARNING

For vertical mounting, the maximum allowable ambient temperature is reduced by 10 degrees C. Mount the I4
PLC CPU below any expansion modules.

When planning your layout for the I4 PLC system, allow enough clearance for the wiring and communications
cable connections. For additional flexibility in configuring the layout of the I4 PLC system, use the I/O expansion
cable.

Figure 3-1 Mounting Methods, Orientation, and Clearance

Vertical Panel
Mounting

Clearance

7.5 mm

35 mm

1 mm

DIN Rail

75 mm

Front of the
Enclosure

Side View

Mounting
Surface

25 mm

Horizontal DIN Rail Mounting with Optional
Expansion Cable (limit one per system)

Installing the I4 PLC

SM Version 1.4 22 I4 Series

2. Installing and removing the I4 PLC Modules

The I4 PLC can be easily installed on a standard DIN rail or on a panel.

2.1 Prerequisites

Before you install or remove any electrical device, ensure that the power to that equipment has been turned off.
Also, ensure that the power to any related equipment has been turned off.

 WARNING

Attempts to install or remove I4 PLC or related equipment with the power applied could cause electric shock or
faulty operation of equipment.
Failure to disable all power to the I4 PLC and related equipment during installation or removal procedures
could result in death or serious injury to personnel, and/or damage to equipment.
Always follow appropriate safety precautions and ensure that power to the I4 PLC is disabled before
attempting to install or remove I4 PLC CPUs or related equipment.

Always ensure that whenever you replace or install an I4 PLC device you use the correct module or equivalent
device.

 WARNING

If you install an incorrect module, the program in the I4 PLC will generate an IO exception.
Failure to replace an I4 PLC device with the same model, orientation, or order could result in death or serious
injury to personnel, and/or damage to equipment.
Replace an I4 PLC device with the same model, and be sure to orient and position it correctly.

2.2 Mounting Dimensions

The I4 PLC CPUs and expansion modules include mounting holes to facilitate installation on panels. Refer to
Table 3-1 for the mounting dimensions.

Table 3-1 Mounting Dimensions

I4 Module Width A Width B

CP300, CP301 90 mm 82 mm

CP310 121 mm 113 mm

IM300, IM301, IM310, IM320, IM330 71.2 mm 63.2 mm

IM341, IM342, IM350, IM351, IM360, IM361 46 mm 38 mm

96 mm 88 mm 80 mm

4 mm

4 mm
4 mm

9.5 mm Minimum spacing
between modules
when hard-mounted

Mounting holes
(M4 or No. 8)

A

B

A

B

Installing the I4 PLC

SM Version 1.4 23 I4 Series

2.3 Installing a CPU or Expansion Module

Installing the I4 PLC is easy! Just follow these steps.

Panel Mounting

1- Locate, drill, and tap the mounting holes (M4 or American Standard number 8), using the dimensions in
Table 3-1.

2- Secure the module(s) to the panel, using the appropriate screws.

3- If you are using an expansion module, connect the expansion module ribbon cable into the expansion
port connector under the access door.

DIN Rail Mounting

1- Secure the rail to the mounting panel every 75 mm.

2- Snap opens the DIN clip (located on the bottom of the module) and hook the back of the module onto
the DIN rail.

3- If you are using an expansion module, connect the expansion module ribbon cable into the expansion
port connector under the access door.

4- Rotate the module down to the DIN rail and snap the clip closed. Carefully check that the clip has
fastened the module securely onto the rail. To avoid damage to the module, press on the tab of the
mounting hole instead of pressing directly on the front of the module.

TIP

Using DIN rail stops could be helpful if your I4 PLC is in an environment with high vibration potential or if the I4
PLC has been installed vertically.
If your system is in a high-vibration environment, then panel-mounting the I4 PLC will provide a greater level of
vibration protection.

2.4 Removing a CPU or Expansion Module

To remove an I4 PLC CPU or expansion module, follow these steps:

1- Remove power from the I4 PLC.

2- Disconnect all the wiring and cabling that is attached to the module.

3- If you have expansion modules connected to the unit that you are removing, open the access cover door
and disconnect the expansion module ribbon cable from the adjacent modules.

4- Unscrew the mounting screws or snap open the DIN clip.

5- Remove the module.

Installing the I4 PLC

SM Version 1.4 24 I4 Series

3. Guidelines for Grounding and Wiring

Proper grounding and wiring of all electrical equipment is important to help ensure the optimum operation of your
system and to provide additional electrical noise protection for your application and the I4 PLC.

3.1 Prerequisites

Before you ground or install wiring to any electrical device, ensure that the power to that equipment has been
turned off. Also, ensure that the power to any related equipment has been turned off.

Ensure that you follow all applicable electrical codes when wiring the I4 PLC and related equipment. Install and
operate all equipment according to all applicable national and local standards. Contact your local authorities to
determine which codes and standards apply to your specific case.

 WARNING

Attempts to install or wire the I4 PLC or related equipment with power applied could cause electric shock or
faulty operation of equipment. Failure to disable all power to the I4 PLC and related equipment during
installation or removal procedures could result in death or serious injury to personnel, and/or damage to
equipment.
Always follow appropriate safety precautions and ensure that power to the I4 PLC is disabled before
attempting to install or remove the I4 PLC or related equipment.

Always take safety into consideration as you design the grounding and wiring of your I4 PLC system. Electronic
control devices, such as the I4 PLC, can fail and can cause unexpected operation of the equipment that is being
controlled or monitored. For this reason, you should implement safeguards that are independent of the I4 PLC to
protect against possible personal injury or equipment damage.

 WARNING

Control devices can fail in an unsafe condition, resulting in unexpected operation of controlled equipment.
Such unexpected operations could result in death or serious injury to personnel, and/or damage to equipment.
Use an emergency stop function, electromechanical overrides, or other redundant safeguards that are
independent of the I4 PLC.

3.2 Guidelines for Isolation

I4 PLC AC power supply boundaries and I/O boundaries to AC circuits have been designed and approved to
provide safe separation between AC line voltages and low voltage circuits. These boundaries include double or
reinforced insulation, or basic plus supplementary insulation, according to various standards. Components which
cross these boundaries such as optical couplers, capacitors, transformers, and relays have been approved as
providing safe separation.

 WARNING

Use of non-isolated or single insulation supplies to supply low voltage circuits from an AC line can result in
hazardous voltages appearing on circuits that are expected to be touch safe, such as communications circuits
and low voltage sensor wiring.
Such unexpected high voltages could result in death or serious injury to personnel, and/or damage to
equipment.
Only use high voltage to low voltage power converters that are approved as sources of touch safe, limited
voltage circuits.

3.3 Guidelines for Grounding the I4 PLC

The best way to ground your application is to ensure that all the common and ground connections of your I4 PLC
and related equipment are grounded to a single point. This single point should be connected directly to the earth
ground for your system.

For improved electrical noise protection, it is recommended that all DC common returns be connected to the
same single-point earth ground. Connect the 24 VDC sensor supply common to earth ground.

All ground wires should be as short as possible and should use a large wire size, such as 2 mm2 (14 AWG).

When locating grounds, remember to consider safety grounding requirements and the proper operation of
protective interrupting devices.

Installing the I4 PLC

SM Version 1.4 25 I4 Series

3.4 Guidelines for Wiring the I4 PLC

When designing the wiring for your I4 PLC, provide a single disconnect switch that simultaneously removes
power from the I4 PLC CPU power supply, from all input circuits, and from all output circuits. Provide overcurrent
protection, such as a fuse or circuit breaker, to limit fault currents on supply wiring. You might want to provide
additional protection by placing a fuse or other current limit in each output circuit.

Install appropriate surge suppression devices for any wiring that could be subject to lightning surges.

Avoid placing low-voltage signal wires and communications cables in the same wire tray with AC wires and high-
energy, rapidly switched DC wires. Always route wires in pairs, with the neutral or common wire paired with the
hot or signal-carrying wire.

Use the shortest wire possible and ensure that the wire is sized properly to carry the required current. The
connector accepts wire sizes from 2 mm2 to 0.3 mm2 (14 AWG to 22 AWG). Use shielded wires for optimum
protection against electrical noise. Typically, grounding the shield at the I4 PLC gives the best results.

When wiring input circuits that are powered by an external power supply, include an overcurrent protection device
in that circuit. External protection is not necessary for circuits that are powered by the 24 VDC sensor supply from
the I4 PLC because the sensor supply is already current-limited.

To avoid damaging the connector, be careful that you do not over-tighten the screws. The maximum torque for
the connector screw is 0.56 N-m (5 inch-pounds).

To help prevent unwanted current flows in your installation, the I4 PLC provides isolation boundaries at certain
points. When you plan the wiring for your system, you should consider these isolation boundaries. Refer to
Appendix A for the amount of isolation provided and the location of the isolation boundaries. Isolation boundaries
rated less than 1500 VAC must not be depended on as safety boundaries.

TIP

For a communications network, the maximum length of the communications cable is 50 m without using a
repeater. The communications port on the I4 PLC is non-isolated. Refer to Chapter 7 for more information.

3.5 Guidelines for Inductive Loads

You should equip inductive loads with suppression circuits to limit voltage rise when the control output turns off.
Suppression circuits protect your outputs from premature failure due to high inductive switching currents. In
addition, suppression circuits limit the electrical noise generated when switching inductive loads.

TIP

The effectiveness of a given suppression circuit depends on the application, and you must verify it for your
particular use. Always ensure that all components used in your suppression circuit are rated for use in the
application.

DC Outputs and Relays That Control DC Loads

The DC outputs have internal protection that is adequate for most applications. Since the relays can be used for
either a DC or an AC load, internal protection is not provided.

Figure 3-2 shows a sample suppression circuit for a DC load. In most applications, the addition of a diode (A)
across the inductive load is suitable, but if your application requires faster turn-off times, then the addition of a
Zener diode (B) is recommended. Be sure to size your Zener diode properly for the amount of current in your
output circuit.

Figure 3-2 Suppression Circuit for a DC Load

AC Outputs and Relays That Control AC Loads

The AC outputs have internal protection that is adequate for most applications. Since the relays can be used for
either a DC or an AC load, internal protection is not provided.

Figure 3-3 shows a sample suppression circuit for an AC load. When you use a relay or AC output to switch 115
V/230 VAC loads, place resistor/capacitor networks across the AC load as shown in this figure. You can also use

Output
Point

DC Inductive Load

A B (Optional)

A - 1N4001 diode or equivalent
B - 8.2 V Zener for DC Outputs
36 V Zener for Relay Outputs

Installing the I4 PLC

SM Version 1.4 26 I4 Series

a metal oxide varistor (MOV) to limit peak voltage. Ensure that the working voltage of the MOV is at least 20%
greater than the nominal line voltage.

Figure 3-3 Suppression Circuit for an AC Load

 WARNING

When relay expansion modules are used to switch AC inductive loads, the external resistor/capacitor noise suppression
circuit must be placed across the AC load to prevent unexpected machine or process operation. See Figure 3-3.

3.6 Guidelines for Lamp Loads

Lamp loads are damaging to relay contacts because of the high turn-on surge current. This surge current will
nominally be 10 to 15 times the steady state current for a Tungsten lamp. A replaceable interposing relay or
surge limiter is recommended for lamp loads that will be switched a large number of times during the lifetime of
the application.

Installing the I4 PLC

SM Version 1.4 27 I4 Series

PLC Concepts

SM Version 1.4 28 I4 Series

4 PLC Concepts

1. Execution of the user program

The CPU supports the following types of code blocks that allow you to create an efficient structure for your user
program:

• Organization blocks (OBs) define the structure of the program. Some OBs have predefined behavior
and start events, but you can also create OBs with custom start events.

• Functions (FCs) and function blocks (FBs) contain the program code that corresponds to specific tasks
or combinations of parameters. Each FC or FB provides a set of input and output parameters for sharing
data with the calling block.

Execution of the user program begins with one or more optional start-up organization blocks (OBs) which are
executed once upon entering RUN mode, followed by one cyclic program OB which is executed cyclically. An OB
can also be associated with an interrupt event, which can be either a standard event or an error event, and
executes whenever the corresponding standard or error event occurs.

A function (FC) or a function block (FB) is a block of program code that can be called from an OB or from another
FC or FB.

The size of the user program, data, and configuration is limited by the available load memory and application
memory in the CPU. There is a specific limit to the number of each individual OB, FC, FB and other programming
elements. For more details refer to technical data of each CPU.

Each cycle includes writing the outputs, reading the inputs (when has I/O control), executing the user program
instructions, and performing background processing. The cycle is referred to as a scan cycle or scan.

The expansion modules are detected and logged in only upon power-up.

Inserting or removing a module in the central rail under power (hot) is not supported.

Never insert or remove a module from the central rail when the CPU has power.

 WARNING

Insertion or removal of an expansion module from the central rail when the CPU has power could cause
unpredictable behavior, resulting in damage to equipment and/or injury to personnel.
Always ensure that power is removed from the CPU before inserting or removing a module from the central
rail.

Under the default configuration, all local digital and analog I/O points are updated synchronously with the scan
cycle using an internal memory area called the process image.
The process image contains a snapshot of the physical inputs and outputs (the physical I/O points on the CPU
and expansion modules).

The CPU performs the following tasks:

• The CPU writes the outputs from the process image output area to the physical outputs.

• The CPU reads the physical inputs just prior to the execution of the user program and stores the input
values in the process image input area. This ensures that these values remain consistent throughout the
execution of the user instructions.

PLC Concepts

SM Version 1.4 29 I4 Series

• The CPU executes the logic of the user instructions and updates the output values in the process image
output area instead of writing to the actual physical outputs.

This process provides consistent logic through the execution of the user instructions for a given cycle and
prevents the flickering of physical output points that might change state multiple times in the process image
output area.

You can specify whether digital and analog I/O points are to be automatically updated and stored in the process
image. If you insert a module in the device configuration, its data is located in the process image of the CPU
(default). The CPU handles the data exchange between the module and the process image area automatically
during the update of the process image.

PLC Concepts

SM Version 1.4 30 I4 Series

1.1 Operating modes of the CPU

The CPU has three modes of operation: STOP mode, TRANSIENT TO RUN (STARTUP) mode, RUN mode and
TRANSIENT TO STOP mode.
Status LEDs on the front of the CPU indicate the current mode of operation.

• In STOP mode, the CPU is not executing the program. You can download a project.

• In STARTUP mode, the CPU configs itself and expansion modules. Then the startup OB (if present) is
executed once. Interrupt events are not processed during the startup OB execution.

• In RUN mode, the cyclic program OB is executed repeatedly. Interrupt events can occur and be
processed at any point within the RUN mode.

The CPU supports a warm start for entering the RUN mode. Warm start does not include a memory reset. All
non-retentive system and user data are initialized at warm start. Retentive user data is retained.

A memory reset clears all retentive and non-retentive memory areas, and resets all expansion module
configurations. A memory reset does not clear the diagnostics buffer or the saved values in permanent memory.

NOTICE

When you change retain tags or a module configuration and download program to CPU, the retentive values
are set to their default values. The next transition to RUN performs a warm start, setting all non-retentive data
to their default values and setting all retentive data to their retained values.

You can configure the "start mode after POWER ON" setting of the CPU. This configuration item appears under
the Options in “Online & Diagnostic” for the CPU under “Start Mode”. When power is applied, the CPU performs a
sequence of power-up diagnostic checks and system initialization. During system initialization the CPU deletes all
non-retentive tag values to the initial values from load memory. The CPU retains retentive tag values and then
enters the appropriate operating mode. Certain detected errors prevent the CPU from entering the RUN mode.

You can change the current operating mode using the "STOP" or "RUN" commands from the online tools of the
programming software. You can also include a STOP instruction in your program to change the CPU to STOP
mode. This allows you to stop the execution of your program based on the program logic.

In STOP mode, the CPU handles any communication requests (as appropriate) and performs self-diagnostics.
The CPU does not execute the user program, and the automatic updates of the process image do not occur.

You can download your project only when the CPU is in STOP mode.

PLC Concepts

SM Version 1.4 31 I4 Series

In STARTUP and RUN modes, the CPU performs the tasks shown in the following figure.

Figure 4-1 Processing cycle steps

STARTUP RUN

A. Clears the I (image) memory area

B. Initializes the outputs with either the last
value or the substitute value

C. Executes the startup OB (If available)

D. Copies the state of the physical inputs to I
memory

E. Stores any interrupt events into the queue to
be processed after entering RUN mode

F. Enables the writing of Q memory to the
physical outputs

1. Performs self-test diagnostics

2. Copies the state of the physical inputs to I
Memory

3. Executes the program cycle OBs

4. Writes Q memory to the physical outputs

5. Processes interrupts and communications
during any part of the scan cycle

STARTUP processing

Whenever the operating mode changes from STOP to RUN, the CPU clears the process image inputs, initializes
the process image outputs and processes the startup OB. All OBs has a property named “Has IO Control” which
specifies whether CPU can update I (image) memory area before the execution of the OB and write Q memory to
the physical outputs.

NOTICE

Some OBs executes like a loop such as Cyclic Program, Periodic Interrupt, Time of Day Interrupt. Only one
OB can control the I/O simultaneously. Enabling “Has IO Control” property of each loop OB will disable the
other loop OBs.

In the startup OB you can determine the validity of retentive data and the time-of-day clock and other system
diagnostics information by accessing the special memory tags. You can program instructions inside the startup
OB to examine these special tag values and to take appropriate action.

The CPU also performs the following tasks during the startup processing.

Interrupts are queued but not processed during the startup phase

No cycle time monitoring is performed during the startup phase

1.2 Processing the scan cycle in RUN mode

For each scan cycle, the CPU reads the inputs, executes the user program, writes the outputs, updates
communication modules, and responds to user interrupt events and communication requests. Communication
requests are handled periodically throughout the scan.

These actions are serviced regularly and in sequential order. User interrupt events which are enabled are
serviced according to priority in the order in which they occur.

The following steps will be executed on each OB:

• The scan cycle starts by reading the current values of the digital and analog inputs from the CPU and
expansion modules and then writing these values to the process image when the OB has I/O control.

PLC Concepts

SM Version 1.4 32 I4 Series

• After reading the inputs, the user program is executed from the first instruction through the end
instruction. This includes all the program cycle OB plus all their associated FCs and FBs. The program
cycle OB are executed in order according to its priority and execution condition.

• If the OB has I/O control, the scan cycle ends by preparing the current values of the digital and analog
outputs from the process image and then writing them to the physical outputs of the CPU and expansion
modules.

Communications processing occurs periodically throughout the scan, possibly interrupting user program
execution.

Interrupts can occur during any part of the scan cycle, and are event-driven. When an event occurs, the CPU
interrupts the scan cycle and calls the OB that was configured to process that event. After the OB finishes
processing the event, the CPU resumes execution of the user program at the point of interruption.

1.3 Organization blocks (OBs)

OBs control the execution of the user program. Specific events in the CPU or a hardware event
trigger the execution of an organization block. OBs cannot call each other or be called from an FC or
FB. Only a start event, such as a diagnostic interrupt or a time interval, can start the execution of an
OB. The CPU handles OBs according to their respective priority classes, with higher priority OBs
executed before lower priority OBs. The lowest and highest priority class may vary for individual
CPUs. In order to see the priority classes for a CPU refer to its technical data.

OBs control the following operations:

• Cyclic Program OBs execute cyclically while the CPU is in RUN mode. The main block of the program is
a Cyclic Program OB. This is where you place the instructions that control your program and where you
call additional user blocks. Only one Cyclic Program OB is allowed and always executes repeatedly.
The Main OB is the default. Other program cycle OBs must be created by user.

• Startup OB executes one time when the operating mode of the CPU changes from STOP to RUN,
including powering up in the RUN mode and in commanded STOP-to-RUN transitions. After completion,
the main "Cyclic Program" OB will begin executing. Only one startup OB is allowed.

• Periodic interrupt OBs execute at a specified interval. A periodic interrupt OB will interrupt cyclic
program execution at user defined intervals, such as every 2 seconds. You can configure up a limited
number of these kind of OB. Refer to technical data of a CPU to see the maximum count of such OBs.

• Hardware interrupt OBs execute when the relevant hardware event occurs, including over range or
under range of analog inputs. A hardware interrupt OB will interrupt normal cyclic program execution in
reaction to a signal from a hardware event. You define the events in the properties of the hardware
configuration. One OB is allowed for Hardware interrupt OB.

• Time of Day interrupt OB executes at every second. A Time-of-Day interrupt OB will interrupt cyclic
program execution at one second intervals. You can configure only one Time of Day interrupt OB.

• Stop Program OB executes one time when the operating mode of the CPU changes from RUN to
STOP.

• Emergency Stop Program OB executes cyclically when a hardware emergency stop trigger occurs.
Emergency Stop Program will be executed and all other OBs will be stopped until its hardware trigger is
enabled.

The cyclic program executes once during each program cycle (or scan). During the cyclic program, the CPU,
reads the inputs, executes program and writes the outputs. The cyclic program event is required and is always
enabled. You cannot delete cyclic program OB otherwise the program will not be compiled.

The periodic interrupts allow you to configure the execution of an interrupt OB at a configured scan time. The
initial scan time is configured when the OB is created and selected to be a periodic interrupt OB. A periodic event
will interrupt the cyclic program and execute the periodic interrupt OB (the periodic event is at a higher priority
class than the cyclic program).

Understanding Hardware Interrupt OB

Analog (local) or other expansion modules are capable of detecting and reporting diagnostic errors. The
occurrence or removal of any of several different diagnostic error conditions results in a diagnostic error event.
The following are some of diagnostic errors that are supported:

• No user power

• High limit exceeded

PLC Concepts

SM Version 1.4 33 I4 Series

• Low limit exceeded

• Wire break

Hardware interrupts trigger the execution of Hardware Interrupt OB if it exists. If the OB does not exist,
then the CPU ignores the error. No Hardware Interrupt OB is present when you create a new project. If desired,
you add a Hardware Interrupt OB to your project by double-clicking "Add new block" under "Program blocks" in
the tree, then choose "Organization block", and then " Hardware Interrupt ".

PLC Concepts

SM Version 1.4 34 I4 Series

1.4 CPU memory

The CPU provides the following memory areas to store the user program, data, and configuration:

• Load memory is non-volatile storage for the user program, data and configuration. When a project is
downloaded to the CPU, it is first stored in the Load memory area. This area is located either in a
memory card (if present) or in the CPU. This non-volatile memory area is maintained through a power
loss.

• Application memory is volatile storage for some elements of the user project while executing the user
program. The CPU copies some elements of the project from load memory into work memory. This
volatile area is lost when power is removed, and is restored by the CPU when power is restored.

• Retentive memory is non-volatile storage for a limited quantity of application memory values. The
retentive memory area is used to store the values of selected user memory locations during power loss.
When a power down or power loss occurs, the CPU restores these retentive values upon power up.

1.4.1 Retentive memory

Data loss after power failure can be avoided by marking certain data as retentive in any “Global Tag Table”. To
see how much is available for a specified CPU, refer to its technical data.

Figure 4-2 Mark a tag as retain

1.5 Time of day clock

The CPU supports a time-of-day clock. A built-in lithium battery supplies the energy required to keep the clock
running during times when the CPU is powered down. The battery does not discharge while the CPU has power.
Typically, the battery has sufficient charge to keep the clock and retentive area running for typically 5 years.

To utilize the time-of-day clock, you must set it. Timestamps such as those for diagnostic information, data log
files, and data log entries are based on the system time. You set the time of day from the "Set time" function in
the "Online & diagnostics" view of the online CPU. Intelart Studio then calculates the system time from the time
you set plus or minus the Windows operating system offset from UTC (Coordinated Universal Time). Setting the
time of day to the current local time produces a system time of UTC if your Windows operating system settings
for time zone and daylight savings time correspond to your locale.

I4 PLC includes instructions to read and write the system time (GET_SYS_DT and SET_SYS_DT), to read the
date time and to set the date time.

1.6 Configuring the outputs on a RUN-to-STOP transition

You can configure the behavior of the digital and analog outputs when the CPU is in STOP mode. For any output
of a CPU or expansion module you can set the outputs to either freeze the value or use a substitute value:

• Substituting a specified output value (default): You enter a substitute value for each output (channel) of
that CPU or expansion module. The default substitute value for digital output channels is OFF, and the
default substitute
value for analog output channels is 0.

• Freezing the outputs to remain in last state: The outputs retain their current value at the time of the
transition from RUN to STOP. After power up, the outputs are set to the default substitute value.

PLC Concepts

SM Version 1.4 35 I4 Series

You configure the behavior of the outputs in Device Configuration. Select the individual devices and use the
"Properties" pane to configure the outputs for each device. When the CPU changes from RUN to STOP, the CPU
retains the process image and writes the appropriate values for both the digital and analog outputs, based upon
the configuration.

Figure 4-3 Choosing Stop Action for an output channel

PLC Concepts

SM Version 1.4 36 I4 Series

2. Data storage, memory areas, I/O and addressing

2.1 Accessing the data of the I4 PLC

Intelart Studio facilitates symbolic programming. You create symbolic names or “tags” for the addresses of the
data, whether as PLC tags relating to memory addresses and I/O points or as local variables used within a code
block. To use these tags in your user program, simply enter the tag name for the instruction parameter.

For a better understanding of how the CPU structures and addresses the memory areas, the following
paragraphs explain the “absolute” addressing that is referenced by the PLC tags.
The CPU provides several options for storing data during the execution of the user program:

Global memory: The CPU provides a variety of specialized memory areas, including inputs (I), outputs
(Q), reference memory (G) and bit memory (M). This memory is accessible by all code blocks without
restriction

PLC tag table: You can enter symbolic names in the Intelart Studio PLC tag table for specific memory
locations. These tags are global to all program blocks and allow programming with names that are
meaningful for your application

Temp memory: Whenever a code block is called, the operating system of the CPU allocates the
temporary, or local, memory (L) to be used during the execution of the block. When the execution of the
code block finishes, the CPU reallocates the local memory for the execution of other code blocks.

Static Memory: Whenever a code block is called, the operating system of the CPU allocates the static
local, memory (N) to be used during the execution of the block. But when the execution of the code
block finishes, the CPU does not reallocate the static memory for the execution of other code blocks so
its vale will be fixed until the next execution of that code block.

Each different memory location has a unique address. Your user program uses these addresses to access the
information in the memory location. References to the input (I) or output (Q) memory areas, such as I0.2.4 or
Q2.1.7, access the process image.

Table 4-1 Memory areas

Memory Area Description Force Retentive

I: Process Image Input Copied from physical inputs at the beginning of the scan
cycle

No No

Q: Process Image output Copied to physical outputs at the end of the scan cycle Yes No

M: Bit Memory Control and data memory Yes No

L: Temp Memory Temporary data for a block local to that block No No

G: Reference Memory Control and data memory Yes Yes

S: Special Memory CPU monitoring and control registers No No

Each different memory location has a unique address. Your user program uses these addresses to access the
information in the memory location. The absolute address consists of the following elements:

• Memory area identifier (such as I, Q, or M)

• Size of the data to be accessed (“B” for Byte, “W” for Word, or “D” for DWord)

• Starting address of the data (such as byte 3 or word 3)

When accessing a bit in the address for a Boolean value, you do not enter a mnemonic for the size. You enter
only the memory area, the byte location, and the bit location for the data (such as I0.0, Q0.1, or M3.4).

PLC Concepts

SM Version 1.4 37 I4 Series

M 3 . 4

A B C D

7 6 5 4 3 2 1 0

A Memory area identifier E Bytes of the memory area

B Byte address: byte 3 F Bits of the selected byte

C Separator (“byte.bit”)

D Bit location of the byte (bit 4 of 8)

In the example, the memory area and byte address (M = bit memory area, and 3 = Byte 3) are followed by a
period (“.”) to separate the bit address (bit 4).

2.1.1 Accessing the data in the memory areas of the CPU

Intelart Studio facilitates symbolic programming. Typically, tags are created either in PLC tags or in the interface
at the top of an OB, FC, or FB. These tags include a name, data type, address, and comment. Additionally, in a
reference tag table, a default value or retentive can be specified. You can use these tags when programming by
entering the tag name at the instruction parameter. Optionally you can enter the absolute operand (memory area,
size and offset) at the instruction parameter. The examples in the following sections show how to enter absolute
operands. A % character must be inserted in front of the absolute operand in the program editor.

I (process image input): The CPU samples the peripheral (physical) input points just prior to the OB execution
of each scan cycle and writes these values to the input process image. You can access the input process image
as bits, bytes, words, or double words. Both read and write access is permitted, but typically, process image
inputs are only read.

Table 4-2 Absolute addressing for I memory

Bit I[physical module address].[byte
address].[bit address]

I1.0.1

Byte, Word, or Double Word I[physical module address].
[size][starting byte address]

IB0.4, IW2.5, or ID18.12

Q (process image output): The CPU copies the values stored in the output process image to the physical output
points. You can access the output process image in bits, bytes, words, or double words. Both read and write
access is permitted for process image outputs.

Table 4-3 Absolute addressing for Q memory

Bit Q[physical module address]. [byte
address].[bit address]

Q0.1.1

Byte, Word, or Double word Q[physical module address].
[size][starting byte address]

QB4.5, QW1.10, QD0.40

M (bit memory area): Use the bit memory area (M memory) for both control relays and data to store the
intermediate status of an operation or other control information. You can access the bit memory area in bits,
bytes, words, or double words. Both read and write access is permitted for M memory.

Bit M[byte address].[bit address] M18.7

Byte, Word, or Double word M[size][starting byte address] MB5, MW11, MD90

0
 1

 2
 3

 4
 5

E

F

PLC Concepts

SM Version 1.4 38 I4 Series

Temp (temporary memory): The CPU allocates the temp memory on an as-needed basis. The CPU allocates
the temp memory for the code block at the time when the code block is called (for an FC or FB). The allocation of
temp memory for a code block might reuse the same temp memory locations previously used by a different FC or
FB. The CPU can initialize the temp memory at the time of allocation and therefore the temp memory can start by
a specified value.

Temp memory is similar to M memory with one major exception: M memory has a "global" scope, and temp
memory has a "local" scope:

● M memory: Any OB, FC, or FB can access the data in M memory, meaning that the data is available globally
for all of the elements of the user program.

● Temp memory: Access to the data in temp memory is restricted to the FC, or FB that created or declared the
temp memory location. Temp memory locations remain local and are not shared by different code blocks, even
when the code block calls another code block. For example: When an FB calls an FC, the FC cannot access the
temp memory of the FB that called it.

You access temp memory by symbolic addressing only.

Static (fixed memory): The CPU allocates the static memory on an as-needed basis for OBs and on creation for
FBs. The CPU allocates the static memory for the code block at the time when the code block is called (for an
OB). The allocation of static memory for a code block might reuse a temp memory location previously used by a
different FC or FB. The CPU can initialize the static memory at the time of allocation and therefore the static
memory can start by a specified value. The static memory does not reallocate after allocation by CPU. So its
value always is fixed until a change by user program.

Static memory is similar to M memory with one major exception: M memory has a "global" scope, and Static
memory has a "local" scope:

● M memory: Any OB, FC, or FB can access the data in M memory, meaning that the data is available globally
for all of the elements of the user program.

● Static memory: Access to the data in static memory is restricted to the OB, or FB that created or declared the
temp memory location. Temp memory locations remain local and are not shared by different code blocks, even
when the code block calls another code block. For example: When an OB calls an FC, the FC cannot access the
temp memory of the OB that called it.

You access static memory by symbolic addressing only.

G (reference memory area): Use the reference memory area (G memory) for both control relays and data to
store the intermediate status of an operation or other control information. Also Use the G memory for storing
various types of data, including intermediate status of an operation or other control information parameters for
FBs, and data structures required for many instructions such as timers and counters. You access reference
memory by symbolic addressing only. You can mark a reference tag as “Retain” so its value will be retentive after
CPU power off.

2.2 Configuring the I/O in the CPU and I/O modules

When you add a CPU and I/O modules to your configuration screen, I and Q addresses are automatically
assigned. There is a tool for mapping I and Q addresses to a symbolic tags in an external tag table. See section
25.8 for more info.

Digital inputs and outputs are assigned in groups of 8 points (1 byte) and 16 points (1 word), whether the module
uses all the points or not.

Analog inputs and outputs are assigned separately in real values (4 bytes)

PLC Concepts

SM Version 1.4 39 I4 Series

Figure 4-4 An example of a CPU CP310 with two expansion modules

PLC Concepts

SM Version 1.4 40 I4 Series

3. Processing of analog values

Analog expansion modules provide input signals or expect output values that represent either a voltage range or
a current range. These ranges are ±10V, 0 - 10V, or 0 - 24mA or other special analog signals. The values
returned by the modules are float (REAL) values having the exact value analog value. There is no need for
conversion any word or integer to calculate real analog value. Anything outside the allowed range (overflow or
underflow) will have a specific value. For each analog expansion module see its technical data for more info.

In your control program, you probably need to use these values in engineering units, for example to represent a
volume, temperature, weight or other quantitative value. To do this for an analog input, you must normalize and
scale the analog value to the minimum and maximum values of the engineering units that it represents. For
values that are in engineering units that you need to convert to an analog output value, you normalize and scale
value in engineering units to a value within ±10V, 0 - 10V, or 0 - 24mA, depending on the range of the analog
module. Intelart Studio provides the “SCP_NORM” instruction in order to normalize and scale a numeric range to
another range.

TIP

When you use Temperature expansion modules you don’t need to any conversion. The real tag values
indicate the actual temperature by the module configuration. Just use its tag values in your program.

TIP

In case you use Loadcell expansion modules you can use “WEIGH” instruction in order to execute a complete
weighing system for calibrating and calculating actual weight or force value.

PLC Concepts

SM Version 1.4 41 I4 Series

4. Data types

Data types are used to specify both the size of a data element as well as how the data are to be interpreted.
Each instruction parameter supports at least one data type, and some parameters support multiple data types.
Hold the cursor over the parameter field of an instruction to see which data types are supported for a given
parameter.

A formal parameter is the identifier on an instruction that marks the location of data to be used by that instruction
(example: the IN1 input of an ADD instruction). An actual parameter is the memory location (preceded by a "%"
character) or constant containing the data to be used by the instruction (example %MD400
"Number_of_Widgets"). The data type of the actual parameter specified by you must match one of the supported
data types of the formal parameter specified by the instruction.

When specifying an actual parameter, you must specify either a tag (symbol) or an absolute (direct) memory
address. Tags associate a symbolic name (tag name) with a data type, memory area, memory offset, and
comment, and can be created either in the PLC tags editor or in the Interface editor for a block (OB, FC and FB).
If you enter an absolute address that has no associated tag, you must use an appropriate size that matches a
supported data type, and a default tag will be created upon entry.

All data types are available in the PLC tags editor and the block Interface editors based on their scope. You can
also enter a constant value for many of the input parameters.

• Bit and Bit sequences: Bool (Boolean or bit value), Byte (8-bit byte value), Word (16-bit value) , DWord
(32-bit double-word value) , LWord (64-bit long-word value)

• Integer: USInt (unsigned 8-bit integer), SInt (signed 8-bit integer), UInt (unsigned 16-bit integer), Int
(signed 16-bit integer) , UDInt (unsigned 32-bit integer), DInt (signed 32-bit integer) , ULInt (unsigned
64-bit integer), LInt (signed 64-bit integer)

• Floating-point Real: Real (32-bit Real or floating-point value), LReal (64-bit Real or floating-point value)

• Time and Date: Time (32-bit IEC time value), Date (32-bit IEC date value), TOD (32-bit IEC time-off-day
value), DT (64-bit IEC date-and-time value)

• Character and String: Char (8-bit single character), String (64 byte-length string)

• Array

• Data structure: Struct

• PLC Data type

• Pointers: Any, Variant

Although not available as data types, the following BCD numeric format is supported by the conversion
instructions.

Table 4-4 Size and range of the BCD format

Format Size (bits) Numeric Range Constant Entry Examples

BCD16 16 -999 to 999 123, -123

BCD32 32 -9999999 to 9999999 1234567, -1234567

PLC Concepts

SM Version 1.4 42 I4 Series

4.1 Bool, Byte, Word, DWord and LWord data types

Table 4-5 Bit and bit sequence data types

Data
type

Bit
size

Number type Number range Constant examples Address
examples

Bool 1 Boolean FALSE or TRUE True, False %I1.1.0,
%Q1.0.1,
%M50.7,
Struct1.Tag2.3
TagName

Binary 0 or 1

Octal 8#0 or 8#1

Hexadecimal 16#0 or 16#1

Byte 8 Binary 2#0 to 2#11111111 2#00001111 %IB0.2,
MB10,
FB1.Tag4,
TagName

Unsigned integer 0 to 255 18

Octal 8#0 to 8#377 8#17

Hexadecimal 16#0 to 16#FF 16#F

Word 16 Binary 2#0 to 2#1111111111111111 2#111100001111000
0

%MW10,
FB1.Tag2,
TagName Unsigned integer 0 to 65535 18370

Octal 8#0 to 8#177777 8#170360

Hexadecimal 16#0 to 16#FFFF 16#F0F0

DWord 32 Binary 2#0 to
2#1111111111111111111111

1111111111

2#111100001111111
100001111

%MD10,
FB1.Tag8,

TagName

Unsigned integer 0 to 4294967295 15793935

Octal 8#0 to 8#37777777777 8#74177417

Hexadecimal 16#0 to 16#FFFFFFFF 16#F0FF0F

LWord 64 Binary 2#0 to
2#1111111111111111111111
111111111111111111111111

111111111111111111

2#111100001111111
11111111111111111
11111110011111111

111111111111100

%M1024.0,
Struct3.Lword
2,

TagName

Unsigned integer 18446744073709551615 17446744063709551
614

Octal 8#0 to
8#1777777777777777777777

8#176777748775777
7727777

Hexadecimal 16#0 to
16#FFFFFFFFFFFFFFFF

16#FABFFF12FFFFF
37F

Table 4-6 Bit and bit sequence default value

Data type Default value

Bool False

Byte, Word, DWord, LWord 16#0

4.2 Integer data types

Table 4-7 Integer data types (U= unsigned, S= short, D= double, L= Long)

Data type Bit size Number range Constant Examples Address examples

USInt 8 0 to 255 78, 2#01001110 %MB0, FB1.B4,

TagName SInt 8 -128 to 127 +50, 16#50

UInt 16 0 to 65,535 65295, 0 %MW2, FB1.Tag2,
TagName Int 16 -32,768 to 32,767 30000, +30000

UDInt 32 0 to 4,294,967,295 4042322160 %MD6, FB1.DBD8,
TagName DInt 32 -2,147,483,648 to

2,147,483,647

-2131754992

ULInt 64 0 to 18446744073709551615 4294977295 %M20.0, FB1.Tag2,
TagName LInt 64 -9223372036854775808 to

9223372036854775807
-2347483648

PLC Concepts

SM Version 1.4 43 I4 Series

Table 4-8 Integer default values

Data type Default value

USInt, SInt, UInt, Int, UDInt, DInt, ULInt, LInt 0

4.3 Floating-point real data types

Real (or floating-point) numbers are represented as 32-bit single-precision numbers (Real), or 64-bit double-
precision numbers (LReal) as described in the ANSI/IEEE 754-1985 standard. Single-precision floating-point
numbers are accurate up to 6 significant digits and double-precision floating point numbers are accurate up to 15
significant digits. You can specify a maximum of 6 significant digits (Real) or 15 (LReal) when entering a floating-
point constant to maintain precision.

Table 4-9 Floating-point real data types (L=Long)

Data type Bit
size

Number range Constant Examples Address examples

Real 32 -3.402823e+38 to -1.175 495e-38,

±0,

+1.175 495e-38 to +3.402823e+38

123.456, -3.4, 1.0e-5 %MD0, FB1.R4,

TagName

LReal 64 -1.7976931348623158e+308 to

-2.2250738585072014e-308, ±0,
+2.2250738585072014e-308 to

+1.7976931348623158e+308

12345.123456789e40,
1.2E+40

%M12.0, FB1.R4,

TagName

Table 4-10 Floating-point real default values

Data type Default value

Real, LReal 0.0

TIP

Calculations that involve a long series of values including very large and very small numbers can produce
inaccurate results. This can occur if the numbers differ by 10 to the power of x, where x > 6 (Real), or 15
(LReal). For example (Real): 100 000 000 + 1 = 100 000 000.

4.4 Time and Date data types

Table 4-11 Time and date data types

Data type Bit
size

Range Constant Examples Address examples

Time 32 T#-596h31m23s648ms to

T#-596h31m23s647ms

T#5m30s

T#332h15m30s45ms

%MD0, FB1.T4,

TagName

%M12.0, FB1.R4,

TagName
Date D#1970-01-01 to D#2106-02-07 D#1992-02-07

TimeOfDay TOD#00:00:00 to TOD#23:59:59 TOD#10:20:30

DateTime DT#1970-01-01-00:00:00 to

DT#2106-02-07-23:59:59

D#1992-02-07-
03:28:11

Table 4-12 Time and date default values

Data type Default value

Time T#0ms

Date D#1970-01-01

TimeOfDay TOD#00:00:00

DateTime DT#1970-01-01-00:00:00

4.4.1 Time

TIME data is stored as a signed double integer interpreted as milliseconds. The editor format can use information
for hours (h), minutes (m), seconds (s) and milliseconds (ms). It is not necessary to specify all units of time. For

PLC Concepts

SM Version 1.4 44 I4 Series

example, T#5h10s is valid.
The combined value of all specified unit values cannot exceed the upper or lower limits in milliseconds for the
Time data type (-2,147,483,648 ms to +2,147,483,647 ms).

4.4.2 Date

DATE data is stored as an unsigned integer value which is interpreted as the number of seconds added to the
base date 01/01/1970, to obtain the specified date. The editor format must specify a year, month and day.

4.4.3 TOD

TOD (Time of Day) data is stored as an unsigned double integer which is interpreted as the number of seconds
since midnight for the specified time of day (Midnight = 0 s). The hour (24hr/day), minute, and second must be
specified.

4.4.4 DT

DT (Date and Time) data is stored as an unsigned integer value which is interpreted as the number of seconds
added to the base date time 01/01/1970 00:00:00. The editor format must specify a year, month, day, hour,
minute and second.

4.5 Character and String data types

Table 4-13 Character and String data types

Data type Bit size Range Constant Examples Address examples

Char 8 ASCII character codes: 16#00
to 16#FF

'A', 't', '@' %MB9, FB1.R4,

TagName

String 64*8

(64 bytes)

64 bytes string “ABC” %M10.0, FB1.R4,

TagName

Table 4-14 Character and String default values

Data type Default value

Char ' '

String ""

4.5.1 Char

Char data occupies one byte in memory and stores a single character coded in ASCII format. The editor syntax
uses a single quote character before and after the ASCII character. Visible characters and control characters can
be used. A table of valid control characters is shown in the description of the String data type.

4.5.2 String

The CPU supports the String data type for storing a sequence of single-byte characters. The String type provides
64 bytes for storing the characters.

You can use literal strings (constants) for instruction parameters of type IN using double quotes. For example,
“ABC” is a three-character string that could be used as input for parameter IN of the LEN instruction. You can
also create string variables by selecting data type "String" in the block interface editors for OB, FC, FB, and other
PLC tags editor.

The following example defines a String with maximum character count of 10 and current character count of 3.
This means the String currently contains 3 one-byte characters, but could be expanded to contain up to 10 one-
byte characters.

ASCII control characters can be used in Char and String data. The following table shows examples of control
character syntax.

Table 4-15 Valid ASCII control characters

Control characters ASCII Hex value Control function Examples

$$ 24 Dollar sign “100$$”, “100$24”

$' 27 Single quote “$'Text$'”,”$27Text$27”

PLC Concepts

SM Version 1.4 45 I4 Series

$N or $n 0A Line break “$NText”, “$0A$0DText”

$R or $r 0D Carriage return (CR) “$RText”,”$0DText”

$T or $t 09 Tab “$TText”, “$09Text”

PLC Concepts

SM Version 1.4 46 I4 Series

4.6 Array data type

You can create an array that contains multiple elements of the same data type. Arrays can be created in the
block interface editors for OB, FC, FB, and other PLC tags editor.

To create an array from the block interface editor, name the array and choose data type type[length], then edit
“length” and “type” as follows:

• Type: one of the data types, such as BOOL, SINT, UDINT

• Length: the length for your array

Table 4-16 ARRAY data type rules

Data type Rules

Array

<data type>[length1,length2,…]

• All array elements must be the same data type.

• The index must be greater than or equal to 0.

• Arrays can have one to six dimensions.

• Multi-dimensional index declarations are separated by comma characters.

• Nested arrays, or arrays of arrays, are not allowed.

• The memory size of an array = (size of one element * total number of

elements in array)

Array index Valid index data types Array index rules

Constant or
variable

USInt, SInt, UInt, Int,
UDInt, DInt

• Value limits: 0 to 32767

• Valid: Mixed constants and

variables

• Valid: Constant expressions

• Not valid: Variable
expressions

Example: array declarations Real[20]

Int[11]

String[2,3]

One dimension, 20 elements

One dimension, 11 elements

Two dimension, 6 elements

Example: array addresses ARRAY1[0]

ARRAY2[1,2]

ARRAY3[i,j]

ARRAY1 element 0

ARRAY2 element [1,2]

If i =3 and j=4, then ARRAY3

element[3, 4] is addressed

4.7 Data structure data type

You can use the data type "Struct" to define a structure of data consisting of other data types. The struct data
type can be used to handle a group of related process data as a single data unit. A Struct data type is named and
the internal data structure declared in the data block editor or a block interface editor.

Arrays and structures can also be assembled into a larger structure. For example, you can create a structure of
structures that contain arrays.

A Struct variable begins at an aligned-byte address based on CPU structure (usually 4-byte aligned).

4.8 User data type

The User data type editor lets you define data structures that you can use multiple times in your program. You
create a user data type by opening the "User data types" branch of the project tree and double-clicking the "Add
new user data type" item. On the newly created user data type item, use two single-clicks to rename the default
name and double-click to open the user data type editor.

You create a custom user data type structure using the same editing methods that are used in the tag table
editor. Add new rows for any data types that are necessary to create the data structure that you want.

If a new user data type is created and its interfaced updated (by clicking on “Update Interface” toolbar button in
user data type editor), then the new user type name will appear in the data type selector drop drop-lists in the tag
tables editor and code block interface editor.

PLC Concepts

SM Version 1.4 47 I4 Series

Potential uses of user data types:

• User data types can be used directly as a data type in a code block interface or in tag tables editor

• User data types can be used as a template for the creation of multiple global data blocks that use the
same data structure. For example, a user data type could be a recipe for mixing colors. You can then
assign this user data type to multiple tag editors. Each tag editor can then have the variables adjusted to
create a specific color.

4.9 Pointer data types

The pointer data types (Any and Variant) can be used in the block interface tables for FB and FC code blocks.
You can select a pointer data type from the block interface data type drop-lists.

The Variant data type is also used for instruction parameters.

4.9.1 "Any" pointer data type

The pointer data type ANY ("Any") Only is available for the input / output/ in-out variables of system-defined
Program Organization Units (POUs).

The Any pointer does not occupy any space in memory

4.9.2 "Variant" pointer data type

The data type Variant is a pointer to variables of different data types or parameters. The Variant pointer can point
to structures and individual structural components.

The Variant pointer does not occupy any space in memory.

The following diagram shows the structure of all PLC data types:

Figure 4-5 PLC data types diagram

Variant

Any

AnyBit

Bool

Byte

Word

DWord

LWord

AnyNum

AnyInt

AnyUnsigned

USInt

UInt

UDInt

ULInt

AnySigned

SInt

Int

DInt

LInt

AnyReal

Real

LReal

AnyDuration

Time

AnyDate

TimeOfDay

Date

DateTime

AnyChar

Char

String

System
Struct

FB
User Data

Type

PLC Concepts

SM Version 1.4 48 I4 Series

Device Configuration

SM Version 1.4 49 I4 Series

5 Device Configuration

You create the device configuration for your PLC by adding a CPU and additional modules to your project.

To create the device configuration, add a device to your project.

1- In the Plant Explorer pane double-click on “Add
New Device” or “Devices & Networks”.

CPU

Expansion

Modules

Device Configuration

SM Version 1.4 50 I4 Series

2- In the Catalog pane double-click on a device or drag and drop
it on the “Devices & Networks” editor.

3- A schematic of device will be added on the “Devices &
Networks” editor. Also, in the Plant Explorer pane the device
will be appeared.

4- Double click on the device schematic or on the “Device
Configuration” in the Plant Explorer pane.

5- You can drag and drop a CPU or an expansion module on the
slots of the rail or double-click on it in the Catalog pane.

Device Configuration

SM Version 1.4 51 I4 Series

1. Inserting a CPU

You create your device configuration by inserting a CPU into your project. Be sure you insert the correct model
from the list. Select the CPU from the Catalog pane.

Figure 5-1 Inserting a CPU into the rail

Selecting the CPU in the
Device view displays the CPU
properties in the Properties
pane.

NOTICE

The CPU has a pre-configured IP address 192.168.1.100. If your network does not support the default IP
address You must manually assign an IP address for the CPU during the device configuration. If your CPU is
connected by a serial protocol (such as USB), you may find the CPU COM port name in your device manager
COM ports list.

If Intelart Studio does not find your I4 PLC, a Programmer Configuration dialog will be appeared in order to
change the PG port parameters or search for available devices on a network.

Device Configuration

SM Version 1.4 52 I4 Series

Figure 5-2 Programmer Configuration dialog

2. Adding modules to the configuration

Use the Catalog pane to add modules to the CPU:

Expansion module provides additional digital or analog I/O points. These modules are connected to the right side
of the CPU. To insert a module into the device configuration, select the module in the Catalog pane and either
double-click or drag the module to the highlighted slot. You must add the modules to the device configuration and
download the hardware configuration to the CPU for the modules to be functional.

Table 5-1 Adding a module to the device configuration

Select the module Insert the module Result

3. Configuring the operation of the CPU

To configure the operational parameters for the CPU, select the CPU in the Device view (blue outline around
whole CPU), and use the Properties pane in order to change configurations.

To configure input filter times, select an individual or grouped inputs. The default filter time for the digital inputs is
0 ms.

Device Configuration

SM Version 1.4 53 I4 Series

Figure 5-3 Changing CPU configuration

Property Description

DI, DO, and AI Configures the behavior of the local (on-board) digital and analog I/O (for example,
digital input filter times and digital output reaction to a CPU stop).

High-speed counters

and pulse generators

Enables and configures the high-speed counters (HSC) and the pulse generators
used for

pulse-train operations (PTO), Frequency Out operations (FOO) and pulse-width
modulation (PWM)

When you configure the outputs of the CPU as pulse generators (for use with the
PWM or motion control instructions), the corresponding output addresses (Q0.0,
Q0.1,…) are removed from the Q memory and cannot be used for other purposes in
your user program. If your user program writes a value to an output used as a pulse
generator, the CPU does not write that value to the physical output.

BindedSerialNumber You can bind the CPU to a specific serial number so the program will be compiled
only for that specific serial number. A CPU with a different serial number will not be
programmed by the Intelart Studio.

Password When a CPU is password protected, you must specify the password by this
property in order to going online and programming the device.

4. Configuring the parameters of the modules

To configure the operational parameters for the modules, select the
module in the Device view and use the Properties pane of the inspector
window to configure the parameters for the module.

• Digital I/O: Some inputs can be configured for alternate functions
based on their type and structure. See technical data in order to
know the module configuration.

• Analog I/O: For individual inputs, configure parameters, such as
measurement type (voltage or current), range and smoothing,
and to enable underflow or overflow diagnostics. Analog outputs
provide parameters such as output type (voltage or current) and
for diagnostics, such as short-circuit (for voltage outputs) or
upper/lower limit diagnostics. You can configure ranges of
analog inputs and outputs in engineering units on the Properties dialog.

Figure 5-4 Configuring an expansion module

Device Configuration

SM Version 1.4 54 I4 Series

4.1 Assigning Internet Protocol (IP) addresses

4.1.1 Assigning IP addresses to programming and network devices

If your programming device is using an on-board adapter card connected to your plant LAN (and possibly the
world-wide web), the IP Address Network ID and subnet mask of your CPU and the programming device's on-
board adapter card must be exactly the same. The Network ID is the first part of the IP address (first three octets)
(for example, 211.154.184.16) that determines what IP network you are on. The subnet mask normally has a
value of 255.255.255.0; however, since your computer is on a plant LAN, the subnet mask may have various
values (for example, 255.255.254.0) in order to set up unique subnets. The subnet mask, when combined with
the device IP address in a mathematical AND operation, defines the boundaries of an IP subnet.

NOTICE

In a world-wide web scenario, where your programming devices, network devices, and IP routers will
communicate with the world, unique IP addresses must be assigned to avoid conflict with other network users.
Contact your company IT department personnel, who are familiar with your plant networks, for assignment of
your IP addresses.

If your programming device is using an Ethernet-to-USB adapter card connected to an isolated network, the IP
Address Network ID and subnet mask of your CPU and the programming device's Ethernet-to-USB adapter card
must be exactly the same. The Network ID is the first part of the IP address (first three octets) (for example,
211.154.184.16) that determines what IP network you are on. The subnet mask normally has a value of
255.255.255.0. The subnet mask, when combined with the device IP address in a mathematical AND operation,
defines the boundaries of an IP subnet.

NOTICE

An Ethernet-to-USB adapter card is useful when you do not want your CPU on your company LAN. During
initial testing or commissioning tests, this arrangement is particularly useful.

Programming
Device Adapter
Card

Network Type Internet Protocol (IP) Address Subnet Mask

On-board adapter
card

Connected to
your plant LAN
(and possibly
the world-wide
web)

Network ID of your CPU and
the programming device's on-
board adapter card must be
exactly the same.

The Network ID is the first part
of the IP address (first three
octets) (for example,
211.154.184.16) that
determines what IP network
you are on.)

The subnet mask of your CPU and
the on-board adapter card must be
exactly the same.

The subnet mask normally has a
value of 255.255.255.0; however,
since your computer is on a plant
LAN, the subnet mask may have
various values (for example,
255.255.254.0) in order to set up
unique subnets. The subnet mask,
when combined with the device IP
address in a mathematical AND
operation, defines the boundaries
of an IP subnet.

Ethernet-to-USB
adapter card

Connected to an
isolated network

Network ID of your CPU and
the programming device's
Ethernet-toUSB adapter card
must be exactly the same.

The Network ID is the first part
of the IP address (first three
octets) (for example,
211.154.184.16) that
determines what IP network
you are on.)

The subnet mask of your CPU and
the Ethernet-to-USB adapter card
must be exactly the same.

The subnet mask normally has a
value of 255.255.255.0. The subnet
mask, when combined with the
device IP address in a
mathematical AND operation,
defines the boundaries of an IP
subnet.

Device Configuration

SM Version 1.4 55 I4 Series

4.1.2 Checking the IP address of your programming device

You can check the MAC and IP addresses of your programming device with the following menu selections:

1- Go online to device and in the Plant Explorer pane, double-click on "Online & diagnostic".

2- In the status tab The MAC and other device information are displayed.

4.1.3 Modifying an IP address to a CPU online

You can assign an IP address to a network device online.

1- Go online to device and in the Plant Explorer pane, double-click on "Online & diagnostic".

2- In the Options tab click on “Load” button in order to load the current device configurations.

3- You can change either “IP Address”, “subnet Mask” and “Gateway” fields.

4- By clicking on “Apply” button the current configuration will be transferred to de device.

5- In order to changes take effect, you must power off and the power on the device.

4.1.4 Configuring an IP address for a CPU in your project

IP address: Some CPUs have an Internet Protocol (IP) address. This address allows the device to deliver data
on a more complex, routed network.

Each IP address is divided into four 8-bit segments and is expressed in a dotted, decimal format (for example,
211.154.184.16). The first part of the IP address is used for the Network ID (What network are you on?), and the
second part of the address is for the Host ID (unique for each device on the network). An IP address of
192.168.x.y is a standard designation recognized as part of a private network that is not routed on the Internet.

Subnet mask: A subnet is a logical grouping of connected network devices. Nodes on a subnet tend to be
located in close physical proximity to each other on a Local Area Network (LAN). A mask (known as the subnet
mask or network mask) defines the boundaries of an IP subnet.

A subnet mask of 255.255.255.0 is generally suitable for a small local network. This means that all IP addresses
on this network should have the same first 3 octets, and the various devices on this network are identified by the
last octet (8-bit field). An example of this is to assign a subnet mask of 255.255.255.0 and an IP address of
192.168.2.0 through 192.168.2.255 to the devices on a small local network.

The only connection between different subnets is via a router. If subnets are used, an IP router must be
employed.

IP router: Routers are the link between LANs. Using a router, a computer in a LAN can send messages to any
other networks, which might have other LANs behind them. If the destination of the data is not within the LAN, the
router forwards the data to another network or group of networks where it can be delivered to its destination.

Routers rely on IP addresses to deliver and receive data packets.

IP addresses properties: In the Properties window,
select the "IP" configuration entry. Intelart Studio
displays the Ethernet address property in Properties
pane, which associates the software project with the
IP address of the CPU that will receive that project.

Selected
Ethernet Port

Figure 5-5 Assigning an IP for programming the CPU

Device Configuration

SM Version 1.4 56 I4 Series

 WARNING

When changing the IP address of a CPU online or from the user program, it is possible to create a condition in
which the network may stop.
If the IP address of a CPU is changed to an IP address outside the subnet, the network will lose
communication, and all data exchange will stop. User equipment may be configured to keep running under
these conditions. Loss of communication may result in unexpected machine or process operations, causing
death, severe personal injury, or property damage if proper precautions are not taken.
If an IP address must be changed manually, ensure that the new IP address lies within the subnet.

Programming Concepts

SM Version 1.4 57 I4 Series

6 Programming Concepts

In addition to the standard logical operations that a PLC can perform, seasoned PLC programmers are aware
that, by taking advantages of some of the unique features and characteristics of a PLC, some very powerful
operations can be performed. Some of these are operations that would be very difficult to realize in hardwired
relay logic, but are relatively simple in PLC ladder programs. The reader should not concentrate on memorizing
these concepts, but instead, learn how they work and how they can be best applied to solve programming
problems

Programming Concepts

SM Version 1.4 58 I4 Series

1. Guidelines for designing a PLC system

When designing a PLC system, you can choose from a variety of methods and criteria. The following general
guidelines can apply to many design projects. Of course, you must follow the directives of your own company's
procedures and the accepted practices of your own training and location.

Table 6-1 Guidelines for designing a PLC system

Recommended
steps

Tasks

Partition your
process or
machine

Divide your process or machine into sections that have a level of independence from each
other. These partitions determine the boundaries between controllers and influence the
functional description specifications and the assignment of resources.

Create the
functional

specifications

Write the descriptions of operation for each section of the process or machine, such as the
I/O points, the functional description of the operation, the states that must be achieved
before allowing action for each actuator (such as a solenoid, a motor, or a drive), a
description of the operator interface, and any interfaces with other sections of the process
or machine.

Design the
safety circuits

Identify any equipment that might require hard-wired logic for safety. Remember that
control devices can fail in an unsafe manner, which can produce unexpected startup or
change in the operation of machinery. Where unexpected or incorrect operation of the
machinery could result in physical injury to people or significant property damage, consider
the implementation of electromechanical overrides (which operate independently of the
PLC) to prevent unsafe operations. The following tasks should be included in the design of

safety circuits:

• Identify any improper or unexpected operation of actuators that could be
hazardous.

• Identify the conditions that would assure the operation is not hazardous, and
determine how to detect these conditions independently of the PLC.

• Identify how the PLC affects the process when power is applied and removed, and
also

• identify how and when errors are detected. Use this information only for designing
the normal and expected abnormal operation. You should not rely on this "best
case" scenario for safety purposes.

• Design the manual or electromechanical safety overrides that block the hazardous
operation independent of the PLC.

• Provide the appropriate status information from the independent circuits to the
PLC so that

• the program and any operator interfaces have necessary information.

• Identify any other safety-related requirements for safe operation of the process.

Plan system
security

Determine what level of protection you require for access to your process. You can
password-protect CPUs and program blocks from unauthorized access.

Specify the
operator
stations

Based on the requirements of the functional specifications, create the following drawings of
the operator stations:

• Overview drawing that shows the location of each operator station in relation to
the process

• or machine.

• Mechanical layout drawing of the devices for the operator station, such as display,
switches, and lights.

• Electrical drawings with the associated I/O of the PLC and signal modules.

Create the
configuration

drawings

Based on the requirements of the functional specification, create configuration drawings of
the control equipment:

• Overview drawing that shows the location of each PLC in relation to the process
or machine.

• Mechanical layout drawing of each PLC and any I/O modules, including any
cabinets and

• other equipment.

• Electrical drawings for each PLC and any I/O modules, including the device model

numbers, communications addresses, and I/O addresses.

Create a list of
symbolic names

Create a list of symbolic names for the absolute addresses. Include not only the physical
I/O signals, but also the other elements (such as tag names) to be used in your program.

Programming Concepts

SM Version 1.4 59 I4 Series

2. Structuring your user program

When you create a user program for the automation tasks, you insert the instructions for the program into code
blocks:

• An organization block (OB) responds to a specific event in the CPU and can interrupt the execution of
the user program. The default for the cyclic execution of the user program (Default Main) provides the
base structure for your user program and is the only code block required for a user program. If you
include other OBs in your program, these OBs interrupt the execution of Main. The other OBs perform
specific functions, such as for startup tasks, for handling interrupts and errors, or for executing specific
program code at specific time intervals.

• A function block (FB) is a subroutine that is executed when called from another code block (OB, FB, or
FC). The calling block passes parameters to the FB and also identifies a specific data block instance
that stores the data for the specific call or instance of that FB. Changing the instance of FB allows a
generic FB to control the operation of a set of devices. For example, one FB can control several pumps
or valves, with different instance FBs containing the specific operational parameters for each pump or
valve.

• A function (FC) is a subroutine that is executed when called from another code block (OB, FB, or FC).
The FC does not have an associated instance data. The calling block passes parameters to the FC. The
output values from the FC must be written to a memory address or to a tag.

2.1 Choosing the type of structure for your user program

Based on the requirements of your application, you can choose either a linear structure or a modular structure for
creating your user program:

• A linear program executes all of the instructions for your automation tasks in sequence, one after the
other. Typically, the linear program puts all of the program instructions into the OB for the cyclic
execution of the program (Main Cyclic Program).

• A modular program calls specific code blocks that perform specific tasks. To create a modular structure,
you divide the complex automation task into smaller subordinate tasks that correspond to the
technological functions of the process. Each code block provides the program segment for each
subordinate task. You structure your program by calling one of the code blocks from another block.

By creating generic code blocks that can be reused within the user program, you can simplify the design and
implementation of the user program. Using generic code blocks has a number of benefits:

• You can create reusable blocks of code for standard tasks, such as for controlling a pump or a motor.
You can also store these generic code blocks in a library that can be used by different applications or
solutions.

• When you structure the user program into modular components that relate to functional tasks, the
design of your program can be easier to understand and to manage. The modular components not only
help to standardize the program design, but can also help to make updating or modifying the program
code quicker and easier.

• Creating modular components simplifies the debugging of your program. By structuring the complete
program as a set of modular program segments, you can test the functionality of each code block as it is
developed.

• Creating modular components that relate to specific technological functions can help to simplify and
reduce the time involved with commissioning the completed application.

Linear structure: Modular structure:

Programming Concepts

SM Version 1.4 60 I4 Series

3. Using blocks to structure your program

By designing FBs and FCs to perform generic tasks, you create modular code blocks. You then structure your
program by having other code blocks call these reusable modules. The calling block passes device-specific
parameters to the called block.

When a code block calls another code block, the CPU executes the program code in the called block. After
execution of the called block is complete, the CPU resumes the execution of the calling block. Processing
continues with execution of the instruction that follows after the block call.

You can nest the block calls for a more modular structure. In the following example, the nesting depth is 4: the
program cycle OB plus 3 layers of calls to code blocks.

Ⓐ Calling block

Ⓑ Called (or interrupting) block

① Program execution

② Instruction or event that initiates the execution
of another block

③ Program execution

④ Block end (returns to calling block)

① Start of cycle

② Nesting depth

Ⓐ

OB, FB, FC

Ⓑ
OB, FB, FC

①

②

③

④

① ②

OB FB FC

FC FC FB

FB

Programming Concepts

SM Version 1.4 61 I4 Series

3.1 Organization block (OB)

Organization blocks provide structure for your program. They serve as the interface between the operating
system and the user program. OBs are event driven. An event, such as a diagnostic interrupt or a time interval,
will cause the CPU to execute an OB. Some OBs have predefined start events and behavior.

The cyclic program OB contains your main program. You can include only one cyclic program OB in your user
program. During RUN mode, the cyclic program OB executes at the lowest priority level and can be interrupted
by all other types of program processing. The startup OB does not interrupt the cyclic program OB because the
CPU executes the startup OB before running the cyclic program.

After finishing the processing of the cyclic program OB, the CPU immediately executes the cyclic program OB
again. This cyclic processing is the "normal" type of processing used for programmable logic controllers. For
many applications, the entire user program is located in a single cyclic program OB.

You can create other OBs to perform specific functions, such as for handling interrupts and errors, or for
executing specific program code at specific time intervals. These OBs interrupt the execution of the cyclic
program OB.

Use the "Add New Program Block" dialog to create new OBs in your user program.

Figure 6-1 New Program Block dialog

Interrupt handling is always event driven. When such an event occurs, the CPU interrupts the execution of
the user program and calls the OB that was configured to handle that event. After finishing the execution
of the interrupting OB, the CPU resumes the execution of the user program at the point of interruption.

The CPU determines the order for handling interrupt events by a priority assigned to each OB. Each event has a
particular servicing priority. The respective priority level within a priority class determines the order in which the
OBs are executed. Several interrupt events can be combined into priority classes. For more information, refer to
the PLC concepts chapter section on execution of the user program.

Programming Concepts

SM Version 1.4 62 I4 Series

3.1.1 Creating an additional OB within a class of OB

You can create multiple OBs for your user program. Use the "Add New Program Block" dialog to create an OB.
Enter the name for your OB and submit the new block.

3.1.2 Configuring the operation of an OB

You can modify the operational parameters for an OB. For example, you can configure the interval or priority
parameter for a for a periodic interrupt OB.

Figure 6-2 Periodic Interrupt properties

3.2 Function (FC)

A function (FC) is a code block that typically performs a specific operation on a set of input values. The FC stores
the results of this operation in memory locations. For example, use FCs to perform standard and reusable
operations (such as for mathematical calculations) or technological functions (such as for individual controls
using bit logic operations). An FC can also be called several times at different points in a program. This reuse
simplifies the programming of frequently recurring tasks.

An FC does not have an associated instance data. The FC uses the local data stack for the temporary data used
to calculate the operation. The temporary data is not saved. To store data permanently, assign the output value
to a global memory location, such as M or G memory.

3.3 Function block (FB)

A function block (FB) is a code block that uses an instance data block for its parameters and static data. FBs
have variable memory that is located in a data block named “FB instance”, or "instance".
The instance provides a block of memory that is associated with that FB (or call) of the FB and stores data after
the FB finishes. You can associate different instances with different calls of the FB. The instances allow you to
use one generic FB to control multiple devices. You structure your program by having one code block make a call
to an FB and its instance. The CPU then executes the program code in that FB, and stores the block parameters
and the static local data in the instance. When the execution of the FB finishes, the CPU returns to the code
block that called the FB. The instance retains the values for that FB. These values are available to subsequent
calls to the function block either in the same scan cycle or other scan cycles.

3.3.1 Reusable code blocks with associated memory

You typically use an FB to control the operation for tasks or devices that do not finish their operation within one
scan cycle. To store the operating parameters so that they can be quickly accessed from one scan to the next,
each FB in your user program has one or more instances. When you call an FB, you also specify an instance that
contains the block parameters and the static local data for that call or "instance" of the FB. The instance
maintains these values after the FB finishes execution.

By designing the FB for generic control tasks, you can reuse the FB for multiple devices by selecting different
instances for different calls of the FB.

An FB stores the Input, Output and Static parameters in an instance.

Programming Concepts

SM Version 1.4 63 I4 Series

3.3.2 Assigning the start value in the instance

The instance stores both a default value and a start value for each parameter. The start value provides the value
to be used when the FB is executed. The start value can then be modified during the execution of your user
program.

The FB interface also provides a "Default value" column that allows you to assign a new start value for the
parameter as you are writing the program code. This default value in the FB is then transferred to the start value
in the associated instance of FB. If you do not assign a new start value for a parameter in the FB interface, the
default value from instance DB is copied to start value.

3.3.3 Using a single FB with multiple instances

The following figure shows an OB that calls one FB three times, using a different instance for each call. This
structure allows one generic FB to control several similar devices, such as motors, by assigning a different
instance for each call for the different devices. Each instance stores the data (such as speed, ramp-up time, and
total operating time) for an individual device.

In this example, FB controls three separate devices, with Instance 1 storing the operational
data for the first device, Instance 2 storing the operational data for the second device, and Instance 3 storing the
operational data for the third device.

3.3.4 Creating reusable code blocks

Use the "Add New Program Block" dialog under
"Program Blocks" in the Plant Explorer pane to
create OBs, FBs and FCs.

When you create a code block, you select the
programming language for the block.

OB

FB

Instance 1

Instance 2

Instance 3

FB, Instance 1

FB, Instance 2

FB, Instance 3

Programming Concepts

SM Version 1.4 64 I4 Series

TIP

When you make or change a user data type (UDT) or a function block (FB) structure,
you must update its interface by clicking on the “Update Interface” button in the
editor toolbar. The changes will not be taken effect until you update the interface of
that data type.

4. Understanding data consistency

The CPU maintains the data consistency for all of the elementary data types (such as Words or DWords) and all
of the system-defined structures (for example, TON or CTU).
The reading or writing of the value cannot be interrupted. (For example, the CPU protects the access to a DWord
value until the four bytes of the DWord have been read or written. To ensure that the cyclic program OB and the
interrupt OBs cannot write to the same memory location at the same time, the CPU does not execute an interrupt
OB until the read or write operation in the program cycle OB has been completed.

If your user program shares multiple values in memory between a cyclic program OB and an interrupt OB, your
user program must also ensure that these values are modified or read consistently.

A communication request from an HMI device or another CPU can also interrupt execution of the cyclic program
OB. The communication requests can also cause issues with data consistency. The CPU ensures that the
elementary data types are always read and written consistently by the user program instructions. Because the
user program is interrupted periodically by communications, it is not possible to guarantee that multiple values in
the CPU will all be updated at the same time by the HMI. For example, the values displayed on a given HMI
screen could be from different scan cycles of the CPU.

Ensure the data consistency for the buffers of data by avoiding any read or write operation to the buffers in both
the cyclic program OB and an interrupt OB.

5. Programming language

Intelart Studio provides the following standard programming languages for I4 PLCs:

• LAD (ladder logic) is a graphical programming language. The representation is based on circuit
diagrams.

• FBD (Function Block Diagram) is a programming language that is based on the graphical logic symbols
used in Boolean algebra.

When you create a code block, you select the programming language to be used by that block.

Your user program can utilize code blocks created in any or all of the programming languages.

5.1 Ladder logic (LAD)

The elements of a circuit diagram, such as normally closed and normally open contacts, and coils are linked to
form networks.

To create the logic for complex operations, you can insert branches to create the logic for parallel circuits.
Parallel branches are opened downwards or are connected directly to the power rail. You terminate the branches
upwards.

Figure 6-3 A sample ladder network

LAD provides "box" instructions for a variety of functions, such as math, timer, counter, and move.

Intelart Studio does not limit the number of instructions (rows and columns) in a LAD network.

Programming Concepts

SM Version 1.4 65 I4 Series

TIP

Every LAD network must terminate with a coil or a box instruction.

Consider the following rules when creating a LAD network:

• You cannot create a branch that would cause a short circuit.

• A ladder network must be flowed from left top to right bottom direction

5.2 Function Block Diagram (FBD)

Like LAD, FBD is also a graphical programming language. The representation of the logic is based on the
graphical logic symbols used in Boolean algebra.

Mathematical functions and other complex functions can be represented directly in conjunction with the logic
boxes.

Intelart Studio does not limit the number of instructions (rows and columns) in an FBD network.

Figure 6-4 A sample function block diagram network

5.3 EN and ENO for LAD and FBD

5.3.1 Determining "power flow" (EN and ENO) for an instruction

Certain instructions (such as the Math and the Move instructions) provide parameters for EN and ENO. These
parameters relate to power flow in LAD or FBD and determine whether the instruction is executed during that
scan.

EN (Enable In) is a Boolean input. Power flow (EN = 1) must be present at this input for the box instruction to be
executed. If the EN input of a LAD box is connected directly to the left power rail, the instruction will always be
executed.

ENO (Enable Out) is a Boolean output. If the box has power flow at the EN input and the box executes its
function without error, then the ENO output passes power flow (ENO = 1) to the next element. If an error is
detected in the execution of the box instruction, then power flow is terminated (ENO = 0) at the box instruction
that generated the error.

Programming Concepts

SM Version 1.4 66 I4 Series

TIP

Some instructions have a short circuited EN-ENO. It means that the ENO is
directly passes the EN value and is not dependent on the functionality of that
instruction.

6. Protection

6.1 Access protection for the CPU

The CPU provides a security mechanism for restricting access to going online. When you configure the password
for a CPU, you limit the communications with the Intelart Studio that cannot be accessed without entering a
password.

The password is case-sensitive.

To configure the password, follow these steps:

1- In the "Online & Diagnostic", o to Options.

2- The Intelart Studio must be gone online and the CPU must be in STOP mode.

3- Click on load button in order to loading the current configuration of CPU.

4- The “Password” field never loads by the current password because of security reasons.

5- Specify the password by entering it in the “Password” field.

6- Click on “Apply” button to download the current configuration to the CPU.

Figure 6-5 Configuration of a CPU

TIP

You can save current configuration in a “.iacfg” file in order to use in future or send to another person.

TIP

A restart is needed after downloading the configuration to the CPU in order to settings will be take effect. You
can simply turn off the power and then turn it on after a few seconds.

Programming Concepts

SM Version 1.4 67 I4 Series

6.1.1 Going online to a protected CPU

In order to going online to a protected CPU,
follow these steps:

1- In the "Device configuration", select the
CPU.

2- In the Properties pane, expand the
"Configuration group”.

3- Select the "Password" property to
enable the protection and to enter a
password.

4- Click on “Ok” button in order to save the
changes.

5- Click on “Go Online” button in main
toolbar.

6.2 Program blocks protection

Program block protection allows you to prevent one or more code blocks (OB, FB or FC) in your program from
unauthorized access. You create a password to limit access to the code block. The password-protection prevents
unauthorized reading or modification of the code block. Without the password, you can read and edit Block tags
editor, block code body, and block properties.

When you configure a block for "Enabled" protection the Intelart Studio asks you a password to protect the
program block. After that the user must enter the password in order be able to view and edit the code body and
tags list otherwise the code within the block will not be accessed. Also, the tags list will be read only and write
protected.

Use the "Properties" pane of the code block to configure the protection for that block. After opening the code
block, select "Protection" from Properties.

1- In the Properties for the code
block, click the "Protection"
drop down list to display the
protection modes list.

2- Click on “Enabled” item and
then enter the password in the
password dialog.

3- Click on “Ok” button in order to
save changes.

4- Close the program block editor
and try to reopen it. You will
see a pop-up dialog asks you a
password to proceed.

5- If you enter the correct
password, all program block
parts will be editable for you.

6- If you click on “Cancel” button, the program block editor will be opened in limited mode (described
earlier).

TIP

If you choose “permanent” mode for protection of a program block, it will be protected permanently and any
user will not be able to edit the program block even by accessing the password.

6.3 Copy protection

An additional security feature allows you to bind the compiled project for use with a specific CPU. This feature is
especially useful for protecting your intellectual property. When you bind a project to a specific device, you restrict
the program and all its code blocks for use only with a specific CPU. This feature allows you to distribute a
program or code block electronically (such as over the Internet or through email) or by sending a memory device.

Programming Concepts

SM Version 1.4 68 I4 Series

1- In the "Device configuration",
select the CPU.

2- In the Properties pane, expand
the "Configuration group”.

3- Click on the
“BindedSerialNumber” property
to enter a specific CPU serial
number.

4- Now you can compile the
project and send the compiler
binary output file for any
person. The compiled project
will be downloaded on a CPU
with the specified serial number
in the “BindedSerialNumber”
property.

TIP

The serial number is not case sensitive.

TIP

You can access the compiled binary output file in the “output” folder beside the “.iapln” plant file.

6.4 Downloading a compiler binary output file

You can download a CPU program without needing the source project. Follow these steps:

1- Click on “Compile” button in main toolbar (or press F7 key on
keyboard).

2- Open the “output” folder beside the “.iapln” plant file. You will see a
“.iabin” file (with the device name in the project).

3- This file contains all program data in order to download without needing to access the source project file.

4- In the “Device” menu, click on the “Download Pre-Compiled” menu item.

5- You will see a dialog asks for “Compiled Application” (“.iabin” file) and “Device Configuration” (“.iacfg
file) files selectable for download to the CPU.

6- Determine each part you need and click on “Download” button.

TIP

If a “.iabin” file is copy protected by binding to a specific serial number, you will be able to download that file
only on the specified CPU but the configuration file always will be downloaded to the CPU.

7. Downloading the elements of your program

You can download the elements of your project from the programming device to the CPU. When you download a
project, the CPU stores the user program (OBs, FCs, FBs and other device configurations) in a nonvolatile
memory (Load Memory).

You can download your project from the programming device to your CPU from any of the following locations:

• "Device" menu: Click the "Current and Download " or
“Download Last Compile” or “Download Pre-Compiled”
menu item.

Programming Concepts

SM Version 1.4 69 I4 Series

• Toolbar: Click the "Compile Current and Download" button or press F6
keyboard key.

• “Tools” menu: Click the “Transfer Program to SD Card”. Some devices may
not support this feature. For more info see the next section.

7.1 Transfer Program to SD Card

You can program a device by a SD card memory If the device supports programming by SD card. Follow these
steps:

1- Insert the SD card into a memory card reader or any other memory card reader and connect the device
to your programming device (PC).

2- Click on “Transfer Program to SD Card” menu item in “Tools” menu.

3- Open the “output” folder beside the “.iapln” plant file. You will see a “.iabin” file (with the device name in
the project).

4- This file contains all program data in order to download without needing to access the source project file.

5- You will see a dialog asks for “Compiled Application” (“.iabin” file) and “Device Configuration” (“.iacfg
file) files selectable for download to the CPU.

6- Determine each part you need and click on “Download” button.

7- You can tell the CPU you want the program data files be removed after downloading program process
by enable the “Delete data files after download” check box (default is checked).

8- Click on “Save Files” button and in the directory selection dialog choose the SD card memory root
address.

9- Click Ok and wait for a moment in order to files be wrote on the memory then safely remove the SD
card.

10- Insert the SD card in the SD card slot in the CPU when the device is turned off.

11- When you turn on the device, it will detect the files and will start the downloading process automatically.
wait for the process to finish. Then remove the SD card.

TIP

You cannot download a Copy Protected program by SD card to CPU.

8. Uploading from the CPU

You cannot upload any part of program from CPU due to security reasons. You must take care of your project
files and keep them in a safe place in order to future use.

9. Monitoring and testing the program

9.1 Monitor and modify data in the CPU

As shown in the following table, you can monitor and modify values in the online CPU.

Table 6-2 Monitoring and modifying data with Intelart Studio

Editor Monitor Modify Force Log

Watch & Force list Yes Yes Yes Yes

Program editor Yes Yes No No

Programming Concepts

SM Version 1.4 70 I4 Series

Figure 6-7 Monitoring with the LAD editor

Figure 6-8 Monitoring, Modifying, Forcing and logging with a watch & Force List

9.2 Watch and force list

You use "Watch & Force List" for monitoring, modifying, Forcing and Logging the values of a user program being
executed by the online CPU. With a Watch & Force List, you can monitor and interact with the CPU as it
executes the user program. You can display or change values not only for the tags of the code blocks, but also
for the memory areas of the CPU, including the inputs and outputs (I and Q), special memory (S), bit memory
(M), and reference memory (G).

With the Watch & Force List, you can modify or force the physical digital and analog outputs (Q) of a CPU. For
example, you can assign specific values to the outputs when testing the wiring for the CPU.

TIP

You cannot force an input (or "I" address).

9.3 Cross reference to show usage

The Inspector window displays cross-reference information about how a selected object is used throughout the
complete project, such as the user program, the CPU and any HMI devices. The "Cross-reference" dialog
displays the instances where a selected object is being used and the other objects using it. To display the cross-
references, select the "Cross References" in context menu of that object.

TIP

By double-click on the Cross References dialog items you can navigate to that object.

9.4 Call structure to examine the calling hierarchy

The call structure describes the call hierarchy of the block within your user program. It provides an overview of
the blocks used, calls to other blocks and the relationships between blocks. You can open the program editor and
edit blocks from the call structure.

Displaying the call structure provides you with a list of the blocks used in the user program. Intelart Studio
highlights the first level of the call structure and displays any blocks that are not called by any other block in the
program. The first level of the call structure displays the OBs and any FCs or FBs that are not called by an OB. If
a code block calls another block, the called block is shown as an indentation under the calling block. The call
structure only displays those blocks that are called by a code block.

Figure 6-6 Modifying with the LAD editor

Basic Instructions

SM Version 1.4 71 I4 Series

7 Basic Instructions

This chapter describes basic instructions based on IEC 61131-3. Also, some instructions have been added in
addition to the original IEC instructions.

Before you start programming a CPU, you must know the following concepts. Some instructions may support
none, some, or all of these concepts. All configurable instructions emerge a “configuration” group in the
Properties pane when you are select them by mouse. To be able to use all these features, you need to know
these features:

• Instruction Type: you can change the
operation logic of some instructions without
needing to delete theme and add new
instruction of that group. You just can easily
change the logic (or type of that instruction) by
changing the InstructionType property.
Example: you want to change
a wired AND instruction to OR
but you have set the
arguments so deleting and
adding a new instruction will
be awkward. You can make
the AND to OR by changing
the InstructionType property
or by double-click on its name
in top of the instruction box
and select another instruction
type.

• Operation Type: Some instructions can
operate on multiple internal data types. You
can select the most suitable data type for your
that instruction by chnging the
“OperationDataType” property in Properties
pane. Example: you have inserted a ADD
instruction and it is going to add real tags
together. In this case you must change the
“OperationDataType” property to “Real”.

Basic Instructions

SM Version 1.4 72 I4 Series

• Inputs/Outputs Count: If an instruction
supports variable inputs or outputs count, you
can change them by the “InputsCount” or
“OutputsCount” properties in properties pane.
Example: you want to add 5 numbers together.
Instead of using multiple ADD instruction, you
can change “InputsCount” propertu to 5 so the
inputs of the ADD instruction will be increased to
5.

• Implicit Casting: In implicit casting, the conversion involves a smaller
data type to the larger type size. For example, the SInt datatype implicitly
cast into Int. The process of converting the lower data type to that of a
higher data type is referred to as internal widening in the instruction
opertions. Example: You want to specify the number of shifting in the SHR
instruction. As the N input is of type AnyInt, you can enter any integer with
any size (such as USint or ULInt) or a constant. The convertion process
will be autmatically without error in the internal instruction operations.

• Explicit Casting: Explicit type conversion, also called type casting, is a
type conversion which is explicitly defined within a program (instead of
being done automatically according to the operation of instruction or
implicit type conversion). It is requested by the user in the program.
Example: An ADD instruction with Int Operation Data Type can accept any
number (AnyNum) on its arguments. If the argument assigned tag data
type does not match the instruction type, an explicit casting will be
occurred automatically before execution of ADD instruction internal operations.

 WARNING

Sometimes an explicit casting
can lead to runtime error in
CPU. For example, if you try
to cast an Int with a value
1000 to an SInt value, a
runtime error will be occurred.
Explicit casting with the
probability of runtime error emerges as a bold square
beside the instruction argument.

• EN/ENO Arguments: In LAD or FBD some instructions provide input EN and output ENO arguments.
For these instructions, if you want to allow the execution of the instruction, set its EN to 1. If you want to
suppress the execution of an instruction, set its EN to 0. If the block is executed correctly, output ENO
follows input EN. If an error is detected while executing an instruction with internal error diagnostic,
output ENO of that instruction is set to value 0. The values for all other outputs and in-out variables of
the instruction are in principle undefined. That means that these variables can assume different values
on different operation states.

TIP

When to use ENO with instructions providing an internal error diagnostic?
If you want to clear the execution of following blocks but only when the current block is executed
without errors, then make the execution of the following blocks dependent on output ENO of the
current block (for example by an appropriate access to output ENO).

Basic Instructions

SM Version 1.4 73 I4 Series

• EN-ENO Connected: You may see some
instructions have a line between their EN and
ENO arguments. It means the ENO follows the
EN value regardless of instruction execution
result. Example: ADD instruction is an EN-ENO
connected instruction but MUL instruction is
not.

• Wire and non-Wire Arguments: In FBD you
can connect multiple instructions by a wire
together. You can determine whether an
argument can be wired or not by checking the
space between the argument indicator. Space
between character (such as “. . .” or “? ? ?”
instead of “…” or “???”) indicates that it can be
wired to another argument. Example: OUT and IN arguments in SHR and SHL instructions accept wire
but the N argument do not.

TIP

Wiring instructions in FBD:
1- Press down left mouse button on an output argument and then drag the mouse while the left

mouse button is hold down
2- Move the mouse cursor over an input argument that you desire to make a wiring between

them.
3- when the wiring between the two arguments is eligible the mouse cursor turns to a green

icon indicating you release the mouse button to make a wire connection between the
arguments. Otherwise, the mouse cursor icon remains in a red status.

Figure 7-1 An eligible wiring

Figure 7-2 An unauthorized wiring

• Optional Argument: Some instructions have one or more arguments that is not necessary to assign a
tag (or constant). These arguments will be indicated by “…” or “. . .”. In case you do not assign a tag (or
constant) to an optional argument, its default value will be determined.

• Limited/Unlimited Function Array Argument: When you design a FC or FB, you can define arrays of
unlimited size for some arguments. This feature makes your FCs and FBs not dependent on array size
so you can design more general FCs or FBs. In order to define an unlimited array, you should define an
array like a limited size array but place a “*” instead of a number for each dimension size.

Example:

Basic Instructions

SM Version 1.4 74 I4 Series

TIP

You can define unlimited arrays for Input, Output and InOut in FCs and only for InOut in FBs.

• Abstract Function Argument: When you design a FC or FB, you can define an abstract data type
instead a basic data type. For example, you can define an AnyInt instead of Int so you will be able to
assign SInt, Int, DInt and LInt tags to that argument when you call your FC or FB.

Example:

TIP

You can define abstract data types for Input, Output and InOut in FCs and only for InOut in FBs.

• Local/Global Argument Notation: You can determine whether an
assigned tag to an instruction argument is global or local by the
prepended character “#” for locals. That means if a local tag assigns to
an instruction argument, its name will be started by a “#” sign. Example:
Assigned tag to IN1 is a global tag but the assigned tag to IN2 is a local
tag.

TIP

All I, Q, M and G tags are global elsewhere are local.

1. Bit logic

1.1 Bit logic contacts and coils

LAD and FBD are very effective for handling Boolean logic.

1.1.1 LAD contacts

Table 7-1 Normally open and normally closed contacts

LAD Description

Normally open and normally closed contacts: You can connect contacts to other contacts
and create your own combination logic. If the input bit you specify uses memory identifier I
(input) or Q (output), then the bit value is read from the process-image register. The
physical contact signals in your control process are wired to I terminals on the PLC. The
CPU scans the wired input signals and continuously updates the corresponding state
values in the process-image input register.

Supported Properties: Instruction Type

Table 7-2 Data types for the parameters

Parameter Data type Description

IN Bool Assigned bit

• The Normally Open contact is closed (ON) when the assigned bit value is equal to 1.

• The Normally Closed contact is closed (ON) when the assigned bit value is equal to 0.

• Contacts connected in series create AND logic networks.

Basic Instructions

SM Version 1.4 75 I4 Series

• Contacts connected in parallel create OR logic networks.

FBD AND, OR, and XOR boxes

In FBD programming, LAD contact networks are transformed into AND (&), OR (>=1), and exclusive OR (x) box
networks where you can specify bit values for the box inputs and outputs. You may also connect to other logic
boxes and create your own logic combinations.

Box inputs and outputs can be connected to another logic box, or you can enter a bit address or bit symbol name
for an unconnected input. When the box instruction is executed, the current input states are applied to the binary
box logic and, if true, the box output will be true.

Table 7-3 AND, OR, and XOR boxes

FBD Description

All inputs of an AND box must be TRUE for the output to be TRUE.

Any input of an OR box must be TRUE for the output to be TRUE.

An odd number of the inputs of an XOR box must be TRUE for the output to be
TRUE.

Supported Properties: Instruction Type, Inputs Count

Table 7-4 Data types for the parameters

Parameter Data type Description

IN1, IN2 Bool Input bit

OUT Bool Output bit

NOT logic inverter

Table 7-5 NOT Logic inverter

LAD FBD Description

For FBD programming, you can drag the "Bitwise inverting"
instruction from the Catalog and then drop it on a network.

The LAD NOT contact inverts the logical state of power flow input.

• If there is no power flow into the NOT contact, then there
is power flow out.

• If there is power flow into the NOT contact, then there is
no power flow out.

Supported Properties: None

Table 7-6 Data types for the parameters

Parameter Data type Description

IN Bool Input bit

OUT Bool Output bit

Output coil and assignment box

Basic Instructions

SM Version 1.4 76 I4 Series

The coil output instruction writes a value for an output bit. If the output bit you specify uses memory identifier Q,
then the CPU turns the output bit in the process-image register on or off, setting the specified bit equal to power
flow status. The output signals for your control actuators are wired to the Q terminals of the CPU. In RUN mode,
the CPU system continuously scans your input signals, processes the input states according to your program
logic, and then reacts by setting new output state values in the process-image output register. After each
program execution cycle, the CPU system transfers the new output state reaction stored in the process-image
register to the wired output terminals.

Table 7-7 Output coil (LAD) and output assignment box (FBD)

LAD FBD Description

In FBD programming, LAD coils are transformed into
assignment (= and /=) boxes where you specify a bit address
for the box output. Box inputs and outputs can be connected
to other box logic or you can enter a bit address.

Supported Properties: Instruction Type

Table 7-8 Data types for the parameters

Parameter Data type Description

TOP (Argument above the instruction) Bool Assigned bit

OUT Bool Follows state of "IN"

• If there is power flow through an output coil or an FBD "=" box is enabled, then the output bit is set to 1.

• If there is no power flow through an output coil or an FBD "=" assignment box is not enabled, then the
output bit is set to 0.

• If there is power flow through an inverted output coil or an FBD "/=" box is enabled, then the output bit is
set to 0.

• If there is no power flow through an inverted output coil or an FBD "/=" box is not enabled, then the
output bit is set to 1.

1.2 Set and reset instructions

Set and Reset 1 bit

Table 7-9 S and R instructions

LAD FBD Description

In FBD programming, LAD coils are transformed into
assignment (= and /=) boxes where you specify a bit address
for the box output. Box inputs and outputs can be connected

to other box logic or you can enter a bit address.

These instructions can be placed anywhere in the network.

Supported Properties: Instruction Type

Table 7-10 Data types for the parameters

Parameter Data type Description

IN (or connect to contact/gate logic) Bool Bit location to be monitored

TOP (Argument above the instruction) Bool Bit location to be set or reset

OUT Bool Follows state of "IN"

Basic Instructions

SM Version 1.4 77 I4 Series

Set-dominant and Reset-dominant bit latches

Table 7-11 RS and SR instructions

LAD/ FBD Description

RS is a reset dominant latch where the reset dominates. If the set (S)
and reset (R1) signals are both true, the output address OUT will be 0.

SR is a set dominant latch where the set dominates. If the set (S1) and
reset (R) signals are both true, the output address OUT will be 1.

Supported Properties: None

Table 7-12 Data types for the parameters

Parameter Data type Description

S, S1 Bool Set input; 1 indicates dominance

R, R1 Bool Reset input; 1 indicates dominance

Q Bool Assigned bit output "Q"

INSTANCE (Argument above the instruction) RS RS and SR function block (system) instance

Instruction S R1 Q

RS 0 0 Previous state

 0 1 0

 1 0 1

 1 1 0

 S1 R

SR 0 0 Previous state

 0 1 0

 1 0 1

 1 1 1

1.3 Positive and negative edge instructions

Table 7-13 P_TRIG and N_TRIG instructions Version 1.0

LAD FBD Description

The Q output power flow or logic state is TRUE when a
positive transition (OFF to ON) is detected on the CLK input
state (FBD) or CLK power flow in (LAD).

The Q output power flow or logic state is TRUE when a
negative transition (ON o OFF) is detected on the CLK input
state (FBD) or CLK power flow in (LAD).

Supported Properties: Instruction Type

Basic Instructions

SM Version 1.4 78 I4 Series

Table 7-14 P_TRIG and N_TRIG instructions Version 2.0

LAD FBD Description

LAD: The state of this contact is TRUE when a positive
transition (OFF to ON) is detected on the assigned "IN" bit.
The contact logic state is then combined with the power flow
in state to set the power flow out state. The P contact can be

located anywhere in the network except the end of a branch.

FBD: The output logic state is TRUE when a positive
transition (OFF to ON) is detected on the assigned input bit.

This is the version 2.0 of R_TRIG function block.

LAD: The state of this contact is TRUE when a negative
transition (ON to OFF) is detected on the assigned input bit.
The contact logic state is then combined with the power flow
in state to set the power flow out state. The N contact can be
located anywhere in the network except the end of a branch.

FBD: The output logic state is TRUE when a negative
transition (ON to OFF) is detected on the assigned input bit.
This is the version 2.0 of F_TRIG function block.

Supported Properties: Instruction Type

Table 7-15 P_TRIG and N_TRIG instructions Version 3.0

LAD FBD Description

LAD: The assigned bit "Q" is TRUE when a positive
transition (OFF to ON) is detected on the “CLK” input.
The power flow in state always passes through the coil

as the power flow out state.

FBD: The assigned bit "Q" is TRUE when a positive
transition (OFF to ON) is detected on the logic state at

the box input connection or on the input bit assignment.

LAD: The assigned bit "Q" is TRUE when a negative
transition (ON to OFF) is detected on the “CLK” input.
The power flow in state always passes through the coil
as the power flow out state.

FBD: The assigned bit "Q" is TRUE when a negative
transition (ON to OFF) is detected on the logic state at
the box input connection or on the input bit assignment.

Supported Properties: Instruction Type

Table 7-16 Data types for the parameters

Parameter Data type Description

CLK Bool Power flow or input bit whose transition edge is
to be detected

Q Bool Output which indicates an edge was detected

INSTANCE (Argument above the instruction) R_TRIG,
F_TRIG

R_TRIG and F_TRIG function block (system)
instance

All edge instructions use a memory bit (M) in their instance to store the previous state of the input signal being
monitored. An edge is detected by comparing the state of the input with the state of the memory bit. If the states
indicate a change of the input in the direction of interest, then an edge is reported by writing the output TRUE.
Otherwise, the output is written FALSE.

TIP

Edge instructions evaluate the input and memory-bit values each time they are executed, including the first
execution. You must account for the initial states of the input and memory bit (M) in your program design
either to allow or to avoid edge detection on the first scan.
Because the memory bit must be maintained from one execution to the next, you should use a unique
instance for each edge instruction, and you should not use this bit any other place in your program. You

Basic Instructions

SM Version 1.4 79 I4 Series

should also avoid temporary memory and memory that can be affected by other system functions, such as an
I/O update. Use only M, global G, or Static memory (in an OB or FB) for instancing R_TRIG or F_TRIG.

TIP

Sometimes you are planning for a multi task program that only on edge detection operation must be occur in
individual task. That means when the first OB aware an edge detection, it must execute a routine and so other
OBs do not. In this case you create a global R_TRIG or F_TRIG instance and assign it to multiple edge
detection instructions in different OBs. So, you are sure that only one time an edge detection leads to
execution a code block.

2. Word logic operations

2.1 AND, OR, and XOR instructions

Table 7-17 AND, OR, and XOR instruction

LAD/ FBD Description

AND: Logical AND

OR: Logical OR

XOR: Logical exclusive OR

Supported Properties: Instruction Type, Operation Data Type, Inputs Count

To increase or decrease inputs, click the "▴" or "▾" icon in
the Properties pane.

Table 7-18 Data types for the parameters

Parameter Data type Description

IN1, IN2 Byte, Word, DWord, LWord Logical inputs

OUT Byte, Word, DWord, LWord Logical output

The data type selection sets parameters IN1, IN2, and OUT to the same data type. The corresponding bit values
of IN1 and IN2 are combined to produce a binary logic result at parameter OUT. ENO is always TRUE following
the execution of these instructions.

2.2 Invert instruction

Table 7-19 INV instruction

LAD/ FBD Description

Calculates the binary one's complement of the parameter IN. The one's
complement is formed by inverting each bit value of the IN parameter (changing
each 0 to 1 and each 1 to 0). ENO is always TRUE following the execution of
this instruction.

Supported Properties: Operation Data Type

Table 7-20 Data types for the parameters

Parameter Data type Description

IN Byte, Word, DWord, LWord Data element to invert

OUT Byte, Word, DWord, LWord Inverted output

Basic Instructions

SM Version 1.4 80 I4 Series

2.3 Shift and Rotate

2.3.1 Shift instructions

Table 7-21 SHR and SHL instructions

LAD/ FBD Description

Use the shift instructions (SHL and SHR) to shift the bit pattern of parameter IN.
The result is assigned to parameter OUT.

Parameter N specifies the number of bit positions shifted:

• SHR: Shift bit pattern right

• SHL: Shift bit pattern left

Supported Properties: Instruction Type, Operation Data Type

Table 7-22 Data types for the parameters

Parameter Data type Description

IN Byte, Word, DWord, LWord Bit pattern to shift

N AnyInt Number of bit positions to shift

OUT Byte, Word, DWord, LWord Bit pattern after shift operation

• For N=0, no shift occurs. The IN value is assigned to OUT.

• Zeros are shifted into the bit positions emptied by the shift operation.

• If the number of positions to shift (N) exceeds the number of bits in the target value (8 for Byte, 16 for
Word, 32 for DWord), then all original bit values will be shifted out and replaced with zeros (zero is
assigned to OUT).

• ENO is always TRUE for the shift operations.

Table 7-23 SHL example for Word data

Shift the bits of a Word to the left by inserting zeroes from the right (N = 1)

IN 1110 0010 1010 1101 OUT value before first shift: 1110 0010 1010 1101

 After first shift left: 1100 0101 0101 1010

After second shift left: 1000 1010 1011 0100

After third shift left: 0001 0101 0110 1000

2.4 Rotate instructions

Table 7-24 ROR and ROL instructions

LAD/ FBD Description

Use the rotate instructions (ROR and ROL) to rotate the bit pattern of parameter
IN. The result is assigned to parameter OUT. Parameter N defines the number
of bit positions rotated.

• ROR: Rotate bit pattern right

• ROL: Rotate bit pattern left

Supported Properties: Instruction Type, Operation Data Type

Parameter Data type Description

IN Byte, Word, DWord, LWord Bit pattern to rotate

N AnyInt Number of bit positions to rotate

OUT Byte, Word, DWord, LWord Bit pattern after rotate operation

Basic Instructions

SM Version 1.4 81 I4 Series

• For N=0, no rotate occurs. The IN value is assigned to OUT.

• Bit data rotated out one side of the target value is rotated into the other side of the target value, so no
original bit values are lost.

• If the number of bit positions to rotate (N) exceeds the number of bits in the target value (8 for Byte, 16
for Word, 32 for DWord), then the rotation is still performed.

• ENO is always TRUE following execution of the rotate instructions.

Table 7-25 ROR example for Word data

Rotate bits out the right -side into the left -side (N = 1)

IN 0100 0000 0000 0001 OUT value before first rotate: 0100 0000 0000 0001

 After first rotate right: 1010 0000 0000 0000

After second rotate right: 0101 0000 0000 0000

3. Comparison

3.1 Compare

Table 7-26 Compare instructions Version 1.0

FBD Description

Compares two values of the same data type. When the FBD box comparison is
TRUE, then the box output is TRUE.

Supported Properties: Instruction Type, Operation Data Type

Table 7-27 Compare instructions Version 2.0

LAD FBD Description

Compares two values of the same data type. When the LAD
contact comparison is TRUE, then the contact is activated.
When the FBD box comparison (version 2.0) is TRUE, then
the box output is TRUE.

Supported Properties: Instruction Type, Operation Data Type

For LAD and FBD: Click the InstructionType (such as "==")
to change the comparison type and OperationDataType to
change comparison data type from the drop-down list.

Table 7-28 Data types for the parameters

Parameter Data type Description

IN1, IN2 Any Values to compare

Q Bool Comparison result

Table 7-29 Comparison descriptions

Relation type Description

> IN1 is greater than IN2

>= IN1 is greater than or equal to IN2

== IN1 is equal to IN2

Basic Instructions

SM Version 1.4 82 I4 Series

< IN1 is less than IN2

<= IN1 is less than or equal to IN2

<> IN1 is not equal to IN2

3.2 In-range and Out-of-range instructions

Table 7-30 In Range and Out of Range instructions

LAD/ FBD Description

Tests whether an input value is in or out of a specified value range. If the
comparison is TRUE, then the box output is TRUE.

Supported Properties: Instruction Type, Operation Data Type

Table 7-31 Data types for the parameters

Parameter Data type Description

MIN, VAL, MAX AnyNum Comparator inputs

• The IN_RANGE comparison is true if: MIN <= VAL <= MAX

• The OUT_RANGE comparison is true if: VAL < MIN or VAL > MAX

4. Math

4.1 Add, subtract, multiply and divide instructions

Table 7-32 Add, subtract, multiply and divide instructions

LAD/ FBD Description

• ADD: Addition (IN1 + IN2 = OUT)

• SUB: Subtraction (IN1 - IN2 = OUT)

• MUL: Multiplication (IN1 * IN2 = OUT)

• DIV: Division (IN1 / IN2 = OUT)

An Integer division operation truncates the fractional part of the quotient to
produce an integer output.

Supported Properties: Instruction Type, Operation Data Type, Inputs Count

Table 7-33 Data types for the parameters

Parameter Data type Description

IN1, IN2 AnyNum Math operation inputs

OUT AnyNum Math operation output

Basic Instructions

SM Version 1.4 83 I4 Series

Table 7-34 ENO status

ENO Description

True No error

False The Math operation result value would be outside the valid number range of the data type selected.
The least significant part of the result that fits in the destination size is returned.

Division by 0 (IN2 = 0): The result is undefined and zero is returned.

Real/LReal: If one of the input values is NaN (not a number) then NaN is returned.

MUL Real/LReal: If one IN value is zero and the other is INF, this is an illegal operation and NaN is
returned.

DIV Real/LReal: If both IN values are zero or INF, this is an illegal operation and NaN is returned.

4.2 Modulo instruction

Table 7-35 MOD instruction

LAD/ FBD Description

You can use the MOD instruction to return the remainder of an integer division
operation. The value at the IN1 input is divided by the value at the IN2 input and

the remainder is returned at the OUT output.

Supported Properties: Operation Data Type

Table 7-36 Data types for parameters

Parameter Data type Description

IN1, IN2 AnyInt Modulo inputs

OUT AnyInt Modulo output

Basic Instructions

SM Version 1.4 84 I4 Series

General exponentiation instruction

Table 7-37 EXPT instruction

LAD/ FBD Description

General exponentiation is an operation involving two numbers, the base and
the exponent or power. You can use the EXPT instruction to raising IN1 to a
power of IN2 and return the result at the OUT output.

Supported Properties: Input1 Data Type

Table 7-38 Data types for parameters

Parameter Data type Description

IN1 AnyReal Number to be raised

IN2 AnyNum Number to be powered to

OUT AnyInt Exponent output

4.3 Absolute value instruction

Table 7-39 ABS instruction

LAD/ FBD Description

Calculates the absolute value of a signed integer or real number at parameter
IN and stores the result in parameter OUT.

Supported Properties: Operation Data Type

Table 7-40 Data types for parameters

Parameter Data type Description

IN AnyNum Math operation input

OUT AnyNum Math operation output

4.4 Increment and decrement instructions

Table 7-41 INC and DEC instructions

LAD/ FBD Description

Increments a signed or unsigned integer number value: IN/OUT value +1 =
IN/OUT value

Decrements a signed or unsigned integer number value: IN/OUT value - 1 =
IN/OUT value

Supported Properties: Instruction Type, Operation Data Type

Basic Instructions

SM Version 1.4 85 I4 Series

Table 7-42 Data types for parameters

Parameter Data type Description

IN/ OUT AnyInt Math operation input and output

4.5 Floating-point math instructions

You use the floating-point instructions to program mathematical operations using a Real or LReal data type:

• SQRT: Square root (√IN = OUT)

• LN: Natural logarithm (LN(IN) = OUT)

• LOG: Logarithm to base 10 (LOG(IN) = OUT)

• EXP: Natural exponential (e IN =OUT), where base e = 2.71828182845904523536

• SIN: Sine (sin(IN radians) = OUT)

• COS: Cosine (cos(IN radians) = OUT)

• TAN: Tangent (tan(IN radians) = OUT)

• ASIN: Inverse sine (arcsine(IN) = OUT radians), where the sin(OUT radians) = IN

• ACOS: Inverse cosine (arccos(IN) = OUT radians), where the cos(OUT radians) = IN

• ATAN: Inverse tangent (arctan(IN) = OUT radians), where the tan(OUT radians) = IN

Table 7-43 Examples of floating-point math instructions

LAD/ FBD Description

Square root: √IN = OUT

For example: If IN = 81, then OUT = 9.

Natural exponential: e IN =OUT

For example: If IN = 3, then OUT = 20.0855.

Supported Properties: Instruction Type, Operation Data Type

Table 7-44 Data types for parameters

Parameter Data type Description

IN AnyReal Math operation input

OUT AnyReal Math operation output

5. Timer and Counter

5.1 Timers

You use the timer instructions to create programmed time delays. The number of timers that you can use in your
user program is limited only by the amount of memory in the CPU. Each timer uses a 16-byte IEC_Timer data
type structure to store timer data that is specified at the top of the box or coil instruction.

Basic Instructions

SM Version 1.4 86 I4 Series

Table 7-45 Timer instructions

LAD/ FBD Description

The TON timer sets output Q to ON after a preset time delay.

The TOF timer resets output Q to OFF after a preset time delay.

The TP timer generates a pulse with a preset width time.

Supported Properties: Instruction Type

Table 7-46 Data types for the parameters

Parameter Data type Description

IN Bool TP and TON:

FBD: 0=Disable timer, 1=Enable timer

LAD: No power flow=Disable timer, Power flow=Enable timer

TOF:

FBD: 0=Enable timer, 1=Disable timer

LAD: No power flow=Enable timer, Power flow=Disable timer

PT Time Preset time input

Q Bool Q box output

ET Time Elapsed time

Table 7-47 Effect of value changes in the PT and IN parameters

Timer Changes in the PT and IN parameters

TON • Changing PT is considered while the timer runs.

• Changing IN to FALSE, while the timer runs, resets and stops the timer.

TOF • Changing PT is considered while the timer runs.

• Changing IN to TRUE, while the timer runs, resets and stops the timer.

TP • Changing PT is considered while the timer runs.

• Changing IN has no effect while the timer runs.

PT (preset time) and ET (elapsed time) values are stored in the specified IEC_TIMER structures data as signed
double integers that represent milliseconds of time. TIME data uses the T# identifier and can be entered as a
simple time unit (T#200ms) and as compound time units like T#2s200ms. The negative range of the TIME data
type cannot be used with the timer instructions. Negative PT (preset time) values are set to zero when the timer
instruction is executed. ET (elapsed time) is always a positive value.

Basic Instructions

SM Version 1.4 87 I4 Series

5.1.1 Operation of the timers

Table 7-48 Types of IEC timers

Timer Changes in the PT and IN parameters

TON: ON-delay timer

The TON timer sets output Q to ON
after a preset time delay.

TOF: OFF-delay timer

The TOF timer resets output Q to
OFF after a preset time delay.

TP: Pulse timer

The TP timer generates a pulse

with a preset width time.

In the CPU, no dedicated resource is allocated to any specific timer instruction. Instead, each timer utilizes its
own timer structure in memory and a continuously-running internal CPU timer to perform timing.

When a timer is started due to an edge change on the input of a TON, TOF or TP instruction, the value of the
continuously-running internal CPU timer is copied into the STIME member of the structure allocated for this timer
instruction. This start value remains unchanged while the timer continues to run, and is used later each time the
timer is updated. Each time the timer is started, a new start value is loaded into the timer structure from the
internal CPU timer.

When a timer is updated, the start value described above is subtracted from the current value of the internal CPU
timer to determine the elapsed time. The elapsed time is then compared with the preset to determine the state of
the timer Q bit. The ET and Q members are then updated in the structure allocated for this timer. Note that the

Basic Instructions

SM Version 1.4 88 I4 Series

elapsed time is clamped at the preset value (the timer does not continue to accumulate elapsed time
after the preset is reached).

A timer update is performed when and only when:

• A timer instruction (TON, TOF or TP) is executed

• The "ET" member of the timer structure is referenced directly by an instruction

• The "Q" member of the timer structure is referenced directly by an instruction

5.1.2 Timer programming

The following consequences of timer operation should be considered when planning and creating your user
program:

• You can have multiple updates of a timer in the same scan. The timer is updated each time the timer
instruction (TON, TOF, TP) is executed. However, if you desire to have consistent values throughout a
program scan, then place your timer instruction prior to all other instructions that need these values, and
use tags from the Q and ET outputs of the timer instruction.

• You can have scans during which no update of a timer occurs. It is possible to start your timer in a
function, and then cease to call that function again for one or more scans. If no other instructions are
executed which reference the ET or Q members of the timer structure, then the timer will not be
updated. A new update will not occur until either the timer instruction is executed again or some other
instruction is executed using ET or Q from the timer structure as a parameter.

• Although not typical, you can assign the same timer structure to multiple timer instructions. In general, to
avoid unexpected interaction, you should only use one timer instruction (TON, TOF, TP) per timer
structure.

• Self-resetting timers are useful to trigger actions that need to occur periodically. Typically, self-resetting
timers are created by placing a normally-closed contact which references the timer bit in front of the
timer instruction. This timer network is typically located above one or more dependent networks that use
the timer bit to trigger actions. When the timer expires (elapsed time reaches preset value), the timer bit
is ON for one scan, allowing the dependent network logic controlled by the timer bit to execute. Upon
the next execution of the timer network, the normally closed contact is OFF, thus resetting the timer and
clearing the timer bit. The next scan, the normally closed contact is ON, thus restarting the timer. When
creating self-resetting timers such as this, use the "Q" member of the timer structure as the parameter
for the normally-closed contact in front of the timer instruction.

5.1.3 Time data retention after a RUN-STOP-RUN transition or a CPU power cycle

If a run mode session is ended with stop mode or a CPU power cycle and a new run mode session is started,
then the timer data stored in the previous run mode session is lost, unless the timer data structure is specified as
retentive (TON, TOF and TP timers).

When you accept the defaults in the call options dialog after you place a timer instruction in the program editor,
you are automatically assigned an instance which cannot be made retentive. To make your timer data retentive,
you must use a global retained instance of that timer.

5.1.4 Assign a global DB to store timer data as retentive data

This option works regardless of where the timer is placed (OB, FC, or FB).

1- Create a global instance of a timer in a reference tag table editor (G).

2- In the "Retain" column, check the box so that the timer structure will be retentive. Repeat this process to
create structures for all the timers that you want to store as retentive timers. Rename the timer
structures if desired.

3- Open the program block for editing where you want to place a retentive timer (OB, FC, or FB).

4- Place the timer instruction at the desired location.

5- On the top of the new timer instruction, type the name (you can use the helper to browse) of the global
instance structure that you created above (example: " StaticTON1").

Basic Instructions

SM Version 1.4 89 I4 Series

5.2 Counters

Table 7-49 Counter instructions

LAD/ FBD Description

Use the counter instructions to count internal program events and external
process events. Each counter uses a structure stored in a system structure to
maintain counter data. You assign the data block when the counter instruction

is placed in the editor.

• CTU is a count-up counter

• CTD is a count-down counter

• CTUD is a count-up-and-down counter

Supported Properties: Instruction Type

TIP

The default counter structures operate as Int data type. For other type of integers select another insruction
from Catalog pane. Example: to have a UDInt counter you should use CTU_UDINT instruction.

Table 7-50 Data types for the parameters

Parameter Data type Description

CU, CD Bool Count up or count down, by one count

R (CTU, CTUD) Bool Reset count value to zero

LD (CTD, CTUD) Bool Load control for preset value

PV AnyInt Preset count value

Q, QU Bool True if CV >= PV

QD Bool True if CV <= 0

CV AnyInt Current count value

NOTICE

The numerical range of count values depends on the data type you select. If the count value is an unsigned
integer type, you can count down to zero or count up to the range limit. If the count value is a signed integer,
you can count down to the negative integer limit and count up to the positive integer limit.

The number of counters that you can use in your user program is limited only by the amount of memory in the
CPU.

Basic Instructions

SM Version 1.4 90 I4 Series

These instructions use software counters whose maximum counting rate is limited by the execution rate of the
OB in which they are placed. The OB that the instructions are placed in must be executed often enough to detect
all transitions of the CU or CD inputs.

TIP

For faster counting operations you should hardware counters. For more info about the hardware counters of
your device see its technical data.

5.2.1 Operation of the counters

Table 7-51 Operation of the CTU counter

CTU operation

The CTU counter counts up by 1 when the value of parameter CU changes from 0 to 1. The CTU timing
diagram shows the operation for an unsigned integer count value (where PV = 3). If the value of parameter CV
(current count value) is greater than or equal to the value of parameter PV (preset count value), then the
counter output parameter Q = 1. If the value of the reset parameter R changes from 0 to 1, then the current
count value is reset to 0.

Table 7-52 Operation of the CTD counter

CTD Operation

The CTD counter counts down by 1 when the value of parameter CD changes from 0 to 1. The CTD timing
diagram shows the operation for an unsigned integer count value (where PV = 3).

• If the value of parameter CV (current count value) is equal to or less than 0, the counter output
parameter Q = 1.

• If the value of parameter LOAD changes from 0 to 1, the value at parameter PV (preset value) is
loaded to the

• counter as the new CV (current count value).

Basic Instructions

SM Version 1.4 91 I4 Series

Table 7-53 Operation of the CTUD counter

CTUD operation

The CTUD counter counts up or down by 1 on the 0 to 1 transition of the count up (CU) or count down (CD)
inputs. The CTUD timing diagram shows the operation for an unsigned integer count value (where PV = 4).

• If the value of parameter CV is equal to or greater than the value of parameter PV, then the counter

output parameter QU = 1.

• If the value of parameter CV is less than or equal to zero, then the counter output parameter QD = 1.

• If the value of parameter LOAD changes from 0 to 1, then the value at parameter PV is loaded to the
counter

• as the new CV.

• If the value of the reset parameter R is changes from 0 to 1, the current count value is reset to 0.

5.2.2 Counter data retention after a RUN-STOP-RUN transition or a CPU power
cycle

If a run mode session is ended with stop mode or a CPU power cycle and a new run mode session is started,
then the counter data stored in the previous run mode session is lost, unless the counter data structure is
specified as retentive (CTU, CTD, and CTUD counters).

When you accept the defaults in the call options dialog after you place a counter instruction in the program editor,
you are automatically assigned an instance DB which cannot be made retentive. To make your counter data
retentive, you must use a global retained instance of that counter.

5.2.3 Assign a global DB to store counter data as retentive data

This option works regardless of where the counter is placed (OB, FC, or FB).

1- Create a global instance of a counter in a reference tag table editor (G). Be sure to consider the Type
you want to use for your Preset and Count values.

Counter Data Type Corresponding Type for the Preset and Count Values

CTU INT

CTU_DINT DINT

CTU_LINT LINT

CTU_UDINT UDINT

Basic Instructions

SM Version 1.4 92 I4 Series

CTU_ULINT ULINT

CTD INT

CTD_DINT DINT

CTD_LINT LINT

CTD_UDINT UDINT

CTD_ULINT ULINT

CTUD INT

CTUD_DINT DINT

CTUD_LINT LINT

CTUD_UDINT UDINT

CTUD_ULINT ULINT

2- In the "Retain" column, check the box so that the counter structure will be retentive. Repeat this process
to create structures for all the counters that you want to store as retentive counters. Rename the counter
structures if desired.

3- Open the program block for editing where you want to place a retentive counter (OB, FC, or FB).

4- Place the counter instruction at the desired location.

5- On the top of the new counter instruction, type the name (you can use the helper to browse) of the
global instance structure that you created above (example: " StaticCTU1").

6. Moving and conversion

6.1 Move instructions

Use the Move instructions to copy data elements to a new memory. The source data is not changed by the move
process.

• The MOVE instruction copies a single data element (Any) from the source address specified by the IN
parameter to the destination addresses specified by the OUT parameter.

• The VAR_MOVE instruction copies a data element by its pointer (Variant) from the source address
specified by the IN parameter to the destination addresses specified by the OUT parameter.

Table 7-54 MOVE instructions

LAD/ FBD Description

Copies a data element stored at a specified address to a new address or
multiple addresses.

Copies a data element stored at a specified address to a new address by its
pointer or multiple addresses.

copies a block of data elements to a new block.

Supported Properties: Outputs Count (Except BLK_MOVE)

Table 7-55 Data types for the MOVE instruction

Parameter Data type Description

IN Any Source address

OUT Any Destination address

Basic Instructions

SM Version 1.4 93 I4 Series

Table 7-56 Data types for the VAR_MOVE instruction

Parameter Data type Description

IN Variant Source address

OUT Variant Destination address

Table 7-57 Data types for the BLK_MOVE instruction

Parameter Data type Description

IN Variant Source element

BUF Byte[*] Moving buffer

OUT Variant Destination element

ERROR Bool True if moving encounter an error

6.2 Accessing data by array indexing

To access elements of an array with a variable, simply use the variable as an
array index in your program logic. For example, the following network sets an
output based on the Boolean value of an array of Booleans in "BoolArray"
referenced by the PLC tag "Index".

6.3 Convert instruction

Table 7-58 Convert instruction

LAD/ FBD Description

Converts a data element from one data type to another data type.

Supported Properties: Operation Data Type

Table 7-59 Data types for the parameters

Parameter Data type Description

IN Any Input value

OUT Any Input value converted to a new data type

NOTICE

When you convert a tag value to an AnyBit data type tag (such as byte, word, DWord, LWord), the data will be
memory copied to that AnyBit tag and vice versa. Example: if you convert 3.1415 (Real) to a DWord tag
(Destination) the result will be: 1078529622 (16#40490e56)

Table 7-60 ENO status

ENO Description

True No error

False Conversion error

Basic Instructions

SM Version 1.4 94 I4 Series

6.4 BCD conversion instructions

Table 7-61 BCD conversion instructions

LAD/ FBD Description

Converts a BCD format data element to an AnyUnsigned data type.

Converts an AnyUnsigned data type to a BCD format data element.

Supported Properties: Operation Data Type

Table 7-62 Data types for the BCD_TO instruction

Parameter Data type Description

IN AnyBit Input value

OUT AnyUnsigned Input value converted to a new data type

Table 7-63 Data types for the TO_BCD instruction

Parameter Data type Description

IN AnyUnsigned Input value

OUT AnyBit Input value converted to a new data type

Table 7-64 ENO status

ENO Description

True No error

False Conversion error

6.5 Round, ceiling, floor and truncate instructions

Table 7-65 ROUND, CEIL, FLOOR and TRUNC instructions

LAD/ FBD Description

Converts a real number to an integer. The default data type is Int. The real
number fraction is rounded to the nearest integer value (IEEE - round to
nearest). If the number is exactly one-half the span between two integers (for
example, 10.5), then the number is rounded to the Nearest whole number. For
example:

• ROUND (10.5) = 11

• ROUND (11.5) = 12

Converts an AnyReal number (Real or LReal) to the closest integer greater
than or equal to the selected real number (IEEE "round to +infinity").

Converts an AnyReal number (Real or LReal) to the closest integer smaller
than or equal to the selected real number (IEEE "round to -infinity").

Basic Instructions

SM Version 1.4 95 I4 Series

TRUNC converts a real number to an integer. The fractional part of the real
number is truncated to zero (IEEE - round to zero).

Supported Properties: Instruction Type, Operation Data Type

Table 7-66 Data types for the parameters

Parameter Data type Description

IN AnyReal Floating point input

OUT AnyInt Converted output

Table 7-67 ENO status

ENO Description

True No error

False Conversion error

6.6 Swap instruction

Table 7-68 SWAP instruction

LAD/ FBD Description

Reverses the byte order for two-byte, four-byte and eight-byte data elements.
No change is made to the bit order within each byte.

Supported Properties: Operation Data Type

Table 7-69 Data types for the parameters

Parameter Data type Description

IN Word, DWord, LWord Ordered data bytes IN

OUT Word, DWord, LWord Reverse ordered data bytes OUT

Example 1 Parameter IN = %MB0 (before execution) Parameter OUT = %MB4, (after execution)

Address %MB0 %MB1 %MB4 %MB5

16#1234 12 34 34 12

Word MSB LSB MSB LSB

Example 2 Parameter IN = %MB0 (before execution) Parameter OUT = %MB4, (after execution)

Address %MB0 %MB1 %MB2 %MB3 %MB4 %MB5 %MB6 %MB7

16#12345678 12 34 56 78 78 56 34 12

DWord MSB LSB MSB LSB

Basic Instructions

SM Version 1.4 96 I4 Series

6.7 Serialize instruction

Table 7-70 SERIALIZE instruction

LAD/ FBD Description

You can use the "Serialize" instruction to convert several PLC data types
(UDT), STRUCT or ARRAY of <data type> to a sequential representation
without losing parts of their structure.

You use the instruction to temporarily save multiple structured data items from
your program in a buffer, which should preferably be in an array of byte, and
send them to another CPU or network.

Supported Properties: None

Table 7-71 Data types for the parameters

Parameter Data type Description

INDEX AnyInt Start position of byte array destination buffer

IN Variant Data to be serialized

OUT Byte[*] Serialized stream byte array destination

Table 7-72 ENO status

ENO Description

True No error

False Conversion error

NOTICE

The maximum serializable data length is 1024.

6.8 Deserialize instruction

Table 7-73 DESERIALIZE instruction

LAD/ FBD Description

You can use the "Deserialize" instruction to convert back the sequential
representation of a User data type (UDT), STRUCT or ARRAY of <data
type> and to fill its entire contents.

Supported Properties: None

Table 7-74 Data types for the parameters

Parameter Data type Description

INDEX AnyInt Start position of byte array source buffer

SOURCE Byte[*] Source byte array

OUT Variant Deserialized data

Basic Instructions

SM Version 1.4 97 I4 Series

Table 7-75 ENO status

ENO Description

True No error

False Conversion error

7. Program Control

7.1 FOR statement

Table 7-76 FOR statement instruction

LAD/ FBD Description

A FOR statement is used to repeat a sequence of networks as long as a control
variable is within the specified range of values. The definition of a loop with FOR
includes the specification of an initial and an end value. Both values must be the
same type as the control variable.

Supported Properties: None

Table 7-77 Parameters

Parameter Data type Description

FROM AnyInt Required. Simple expression (tag or constant) that specifies the initial value of the
control variables

TO AnyInt Required. Simple expression (tag or constant) that determines the final value of
the control variables

BY AnyInt Required. Amount by which an "OUT" is changed after each loop. The "BY" has
the same data type as "OUT"

OUT AnyInt Optional. A tag that serves as a loop counter

The FOR statement executes as follows:

• At the start of the loop, the control variable (OUT) is set to the initial value (FROM) and each time the
loop iterates, it is incremented by the specified increment (positive increment) or decremented (negative
increment) until the final value is reached.

• Following each run through of the loop, the condition is checked (final value reached) to establish
whether or not it is satisfied. If the condition is satisfied, the sequence of statements is executed,
otherwise the loop and with it the sequence of statements is skipped.

• The execution scope of a for statement is the networks between the FOR statement and the END
statement. If you put the FOR and END statements in the same network, that network will be the
execution scope of FOR.

• You can use nested FOR loops by placing a FOR statement inside another FOR and before its END
statement.

Example:

Basic Instructions

SM Version 1.4 98 I4 Series

Figure 7-3 An example of nested FOR statements

7.2 WHILE statement

Table 7-78 WHILE statement instruction

LAD/ FBD Description

The WHILE statement performs a series of statements until a given condition (IN) is
True.

You can nest WHILE loops. The END statement refers to the last executed WHILE
instruction.

Supported Properties: None

Table 7-79 Parameters

Parameter Data type Description

IN Bool Required. A Bool tag that evaluates to True or False.

The WHILE statement executes according to the following rules:

• Prior to each iteration of the loop body, the execution condition is evaluated.

• Once the value FALSE occurs, the loop is skipped and the statement following the loop is executed

 WARNING

Always be careful when using the WHILE statement. You must plan a condition for IN parameter to be finally
set to False. If the condition (IN) will be set to always True, then the CPU will get stuck in an infinity loop.

7.3 IF statement

The IF statement is a conditional statement that controls program flow by executing a group of statements, based
on the evaluation of a Bool value of a logical expression. You can also nest or structure the execution of multiple
IF-ELSE statements.

In
n

e
r e

x
e
c
u

tio
n

 S
c
o

p
e

O
u

te
r e

x
e

c
u
tio

n
 S

c
o
p

e

Basic Instructions

SM Version 1.4 99 I4 Series

Table 7-80 Elements of the IF statement

LAD/ FBD Description

If condition (IN) is True, then execute the following statements until encountering
the END statement.

If condition (IN) is False, then skip to END statement (unless the program includes
optional ELSE_IF or ELSE statements).

The optional ELSE_IF statement provides additional conditions to be evaluated. For
example: If condition (IN) in the IF statement is False, then the program evaluates
condition-n (IN). If condition-n is True, then execute statement_N.

The optional ELSE statement provides statements to be executed when the
condition (IN) of the IF statement is False.

Supported Properties: None

Table 7-81 Parameters

Parameter Data type Description

IN Bool Required. A Bool tag that evaluates to True or False.

TIP

You can include multiple ELSE_IF statements within one IF statement.

An IF statement is executed according to the following rules:

• The first sequence of statements whose logical expression = True is executed. The remaining
sequences of statements are not executed.

• If no Boolean expression = True, the sequence of statements introduced by ELSE is executed (or no
sequence of statements if the ELSE branch does not exist).

• Any number of ELSE_IF statements can exist.

TIP

Using one or more ELSIF branches has the advantage that the logical expressions following a valid
expression are no longer evaluated in contrast to a sequence of IF statements. The runtime of a program can
therefore be reduced.

7.4 RET execution control instruction

The optional RET instruction is used to terminate the execution of the current block. If and only if the RET input
IN is true, then program execution of the current block will end at that point and instructions beyond the RET
instruction will not be executed. If the current block is an OB its execution routine will be terminated until the next
scan. If the current block is a FC or FB, its execution routine will be terminated until the next calling of that
program block.

You are not required to use a RET instruction as the last instruction in a block; this is done automatically for you.
You can have multiple RET instructions within a single block.

Table 7-82 RET execution control instruction

LAD/ FBD Description

Terminates the execution of the current block

Basic Instructions

SM Version 1.4 100 I4 Series

Supported Properties: None

Table 7-83 Parameters

Parameter Data type Description

IN Bool Trigger for termination a program block

 WARNING

You should keep in mind that all program control instructions prevent part of the program from running unless
certain conditions are met. If there is a structural error in that part of the program that is supposed to be
executed under certain conditions, the CPU may encounter a runtime error that has never been seen before
executing that code.
Example: the following code will not make an index out of range exception until the Condition tag value
remains False.

8. Selection

8.1 Select

Table 7-84 SEL instruction

LAD/ FBD Description

Depending on a switch (G input), the "Select" instruction selects one of the inputs,
IN1 or IN2 and copies its content to the OUT output. When the input G has signal
state False, the value at the input IN1 is moved. When the input G has signal state
True, the value at the input IN2 is moved to the output OUT.

All tags at all parameters must have the same data type.

Supported Properties: None

Table 7-85 Data types for the parameters

Parameter Data type Description

G Bool Switch

IN1 Any First input value

IN2 Any Second input value

OUT Any Result

Basic Instructions

SM Version 1.4 101 I4 Series

8.2 Get maximum and minimum

Table 7-86 MAX and MIN instructions

LAD/ FBD Description

The MAX instruction compares the value of two parameters IN1 and IN2 and
assigns the maximum (greater) value to parameter OUT.

The MIN instruction compares the value of two parameters IN1 and IN2 and
assigns the minimum (lesser) value to parameter OUT.

Supported Properties: Instruction Type

Table 7-87 Data types for the parameters

Parameter Data type Description

IN1 Any First input value

IN2 Any Second input value

OUT Any Result

8.3 Limit instruction

Table 7-88 LIMIT instruction

LAD/ FBD Description

The Limit instruction tests if the value of parameter IN is inside the value range
specified by parameters MN and MX and if not, clamps the value at MN or MX.

If the value of parameter IN is within the specified range, then the value of IN is
stored in parameter OUT. If the value of parameter IN is outside of the specified
range, then the OUT value is the value of parameter MN (if the IN value is less
than the MN value) or the value of parameter MX (if the IN value is greater than
the MX value)

Supported Properties: None

Table 7-89 Data types for the parameters

Parameter Data type Description

MN Any Minimum value

IN Any Input value

MX Any Maximum value

OUT Any Result

Basic Instructions

SM Version 1.4 102 I4 Series

8.4 Multiplex instruction

Table 7-90 MUX instruction

LAD/ FBD Description

MUX copies one of many input values to parameter OUT, depending on the
parameter K value.

Supported Properties: Inputs Count

Table 7-91 Data types for the parameters

Parameter Data type Description

K AnyInt • 0 selects IN1

• 1 selects IN2

• n selects INn

IN1,IN2,…INn Any Inputs

OUT Any Output

Table 7-92 ENO status

ENO Description

True No error

False Index (K) out of range

8.5 Check for nullity

Table 7-93 IS_NULL instruction

LAD/ FBD Description

You can use this instruction to query whether the Variant or the reference points
to a NULL pointer and therefore does not point to an object.

Supported Properties: None

Table 7-94 Data types for the parameters

Parameter Data type Description

IN Variant Input pointer

Q Bool Result

8.6 Check for array

Table 7-95 IS_ARRAY instruction

LAD/ FBD Description

You can use this instruction to query whether the Variant points to a tag of the
Array data type.

Basic Instructions

SM Version 1.4 103 I4 Series

Supported Properties: None

Table 7-96 Data types for the parameters

Parameter Data type Description

IN Variant Input pointer

Q Bool Result

8.7 Get array length

Table 7-97 ARRAY_LEN instruction

LAD/ FBD Description

You can use this instruction to query number of elements in an array.

Example: an array defined as Bool[1,2,3] has a length of 1*2*3=6

Supported Properties: None

Table 7-98 Data types for the parameters

Parameter Data type Description

IN Variant Array pointer

OUT AnyInt Array length

9. Time

9.1 Time add and subtract

Table 7-99 T_ADD and T_SUB instructions

LAD/ FBD Description

T_ADD adds the input IN1 Time value with the input IN2 Time value. Parameter
OUT provides the Time value result.

T_SUB subtracts the IN2 Time value from IN1 Time value. Parameter OUT
provides the difference value as a Time data type.

Supported Properties: Instruction Type

Table 7-100 Data types for the parameters

Parameter Data type Description

IN1 Time Time value

IN2 Time Time value to add or subtract

OUT Time Time sum or difference

Basic Instructions

SM Version 1.4 104 I4 Series

Table 7-101 ENO status

ENO Description

True No error

False Result out of range

9.2 Time multiplication and division

Table 7-102 T_MUL and T_DIV instructions

LAD/ FBD Description

T_MUL multiplies the input IN1 Time value in IN2 value. Parameter OUT provides
the Time value result.

T_DIV divides the input IN1 Time by IN2 value. Parameter OUT provides the
Time value result.

Supported Properties: Instruction Type, Operation Data Type

Table 7-103 Data types for the parameters

Parameter Data type Description

IN1 Time Time value

IN2 AnyNum Multiply or device factor

OUT Time Time sum or difference

Table 7-104 ENO status

ENO Description

True No error

False Result out of range

9.3 Time of day addition and subtraction time

Table 7-105 TOD_T_ADD and TOD_T_SUB instructions

LAD/ FBD Description

TOD_T_ADD adds the input IN1 TimeOfDay value with the input IN2 Time value.
Parameter OUT provides the TimeOfDay value result.

TOD_T_SUB subtracts the IN2 Time value from IN1 TimeOfDay value.
Parameter OUT provides the difference value as a TimeOfDay data type.

Supported Properties: Instruction Type

Basic Instructions

SM Version 1.4 105 I4 Series

Table 7-106 Data types for the parameters

Parameter Data type Description

IN1 TimeOfDay Time of day value

IN2 Time Time value to add or subtract

OUT TimeOfDay Time of day sum or difference

Table 7-107 ENO status

ENO Description

True No error

False Result out of range

9.4 Date addition and subtraction time

Table 7-108 DT_T_ADD and DT_T_SUB instructions

LAD/ FBD Description

DT_T_ADD adds the input IN1 DateTime value with the input IN2 Time value.
Parameter OUT provides the DateTime value result.

DT_T_SUB subtracts the IN2 Time value from IN1 DateTime value. Parameter
OUT provides the difference value as a DateTime data type.

Supported Properties: Instruction Type

Table 7-109 Data types for the parameters

Parameter Data type Description

IN1 DateTime Time of day value

IN2 Time Time value to add or subtract

OUT DateTime Time of day sum or difference

Table 7-110 ENO status

ENO Description

True No error

False Result out of range

9.5 Date subtraction

Table 7-111 D_SUB instruction

LAD/ FBD Description

D_SUB subtracts the IN2 Date value from IN1 Date value. Parameter OUT
provides the difference value as a Time data type.

Supported Properties: None

Basic Instructions

SM Version 1.4 106 I4 Series

Table 7-112 Data types for the parameters

Parameter Data type Description

IN1 Date Date value

IN2 Date Date value to subtract

OUT Time Time difference

Table 7-113 ENO status

ENO Description

True No error

False Result out of range

9.6 Time of day subtraction

Table 7-114 TOD_SUB instruction

LAD/ FBD Description

TOD_SUB subtracts the IN2 TimeOfDay value from IN1 TimeOfDay value.
Parameter OUT provides the difference value as a Time data type.

Supported Properties: None

Table 7-115 Data types for the parameters

Parameter Data type Description

IN1 TimeOfDay Time of day value

IN2 TimeOfDay Time of day value to subtract

OUT Time Time difference

Table 7-116 ENO status

ENO Description

True No error

False Result out of range

9.7 Date and time subtraction

Table 7-117 DT_SUB instruction

LAD/ FBD Description

DT_SUB subtracts the IN2 DateTime value from IN1 DateTime value. Parameter
OUT provides the difference value as a Time data type.

Supported Properties: None

Table 7-118 Data types for the parameters

Parameter Data type Description

IN1 DateTime Date and time value

Basic Instructions

SM Version 1.4 107 I4 Series

IN2 DateTime Date and time value to subtract

OUT Time Time difference

Table 7-119 ENO status

ENO Description

True No error

False Result out of range

9.8 Time concatenation

Table 7-120 CONCAT_D_TOD instruction

LAD/ FBD Description

CONCAT_D_TOD concatenates the IN2 TimeOfDay value to IN1 Date
value. Parameter OUT provides the concatenated value as a DateTime
data type.

Supported Properties: None

Table 7-121 Data types for the parameters

Parameter Data type Description

IN1 Date Date value

IN2 TimeOfDay Time of day value to concatenate

OUT DateTime DateTime result

Table 7-122 ENO status

ENO Description

True No error

False Result out of range

10. Character and string

10.1 String data overview

String data is stored as a 64 bytes of ASCII character codes. The number of stored bytes occupied by the String
format is always 64 bytes.

String input and output data must be initialized as valid strings in memory, before execution of any string
instructions.

10.2 String operation instructions

Your control program can use the following string and character instructions to create messages for operator
display and process logs.

Basic Instructions

SM Version 1.4 108 I4 Series

10.2.1 LEN

Table 7-123 Length instruction

LAD/ FBD Description

LEN (length) provides the current length of the string IN at output OUT. An empty
string has a length of zero.

Supported Properties: None

Table 7-124 Data types for the parameters

Parameter Data type Description

IN String Input string

OUT Int String length

10.2.2 LEFT and RIGHT

Table 7-125 Left and right substring operations

LAD/ FBD Description

LEFT (Left substring) provides a substring made of the first L characters of string
parameter IN.

RIGHT (Right substring) provides the last L characters of a string.

Supported Properties: Instruction Type

Table 7-126 Data types for the parameters

Parameter Data type Description

IN String Input string

L AnyInt Length of the substring to be created:

• LEFT uses the left-most characters number of characters in the string

• RIGHT uses the right-most number of characters in the string

OUT String Output string

Table 7-127 ENO status

ENO Description

True No error

False If L is greater than the current length of the IN string

Basic Instructions

SM Version 1.4 109 I4 Series

10.2.3 MID

Table 7-128 middle substring operation

LAD/ FBD Description

MID (Middle substring) provides the middle part of a string. The middle substring
is L characters long and starts at character position P (inclusive).

Supported Properties: None

Table 7-129 Data types for the parameters

Parameter Data type Description

IN String Input string

L AnyInt Length of the substring to be created. It uses the number of characters starting
at position P within the string

P AnyInt Position of first substring character to be copied P= 1, for the initial character
position of the IN string

OUT String Output string

Table 7-130 ENO status

ENO Description

True No error

False If the sum of L and P exceeds the current length of the string parameter IN

10.2.4 CONCAT

Table 7-131 Concatenate strings instruction

LAD/ FBD Description

CONCAT (concatenate strings) joins string parameters IN1 and IN2 to form one
string provided at OUT. After concatenation, String IN1 is the left part and String
IN2 is the right part of the combined string.

Supported Properties: None

Table 7-132 Data types for the parameters

Parameter Data type Description

IN1 String Input string 1

IN2 String Input string 2

OUT String Combined string (string 1 + string 2)

Table 7-133 ENO status

ENO Description

True No error

False Maximum length of IN1, IN2 or OUT does not fit within allocated memory range

Basic Instructions

SM Version 1.4 110 I4 Series

10.2.5 INSERT

Table 7-134 Insert substring instruction

LAD/ FBD Description

Inserts string IN2 into string IN1. Insertion begins after the character at position P.

Supported Properties: None

Table 7-135 Data types for the parameters

Parameter Data type Description

IN1 String Input string 1

IN2 String Input string 2

P AnyInt Last character position in string IN1 before the insertion point for string IN2

OUT String Combined string (string 1 + string 2)

Table 7-136 ENO status

ENO Description

True No error

False • P is greater than length of IN1

• The result length is greater than the max allowed string size

• P is less than 0

10.2.6 DELETE

Table 7-137 Delete substring instruction

LAD/ FBD Description

Inserts string IN2 into string IN1. Insertion begins after the character at position P.

Supported Properties: None

Table 7-138 Data types for the parameters

Parameter Data type Description

IN1 String Input string

L AnyInt Number of characters to be deleted

P AnyInt Position of the first character to be deleted: The first character of the IN string is
position number 0

OUT String Output string

Basic Instructions

SM Version 1.4 111 I4 Series

Table 7-139 ENO status

ENO Description

True No error

False • P is greater than length of IN1

• The result length is greater than the max allowed string size

• P is less than 0

10.2.7 REPLACE

Table 7-140 Replace substring instruction

LAD/ FBD Description

Inserts string IN2 into string IN1. Insertion begins after the character at position P.

If parameter L is equal to zero, then the string IN2 is inserted at position P of
string IN1 without deleting any characters from string IN1.

If P is equal to one, then the first L characters of string IN1 are replaced with
string IN2 characters.

Supported Properties: None

Table 7-141 Data types for the parameters

Parameter Data type Description

IN1 String Input string

IN2 String String of replacement characters

L AnyInt Number of characters to replace

P AnyInt Position of first character to be replaced

OUT String Output string

Table 7-142 ENO status

ENO Description

True No error

False • P is greater than length of IN1

• The result length is greater than the max allowed string size

• P is less than 0

10.2.8 FIND

Table 7-143 Find substring instruction

LAD/ FBD Description

Provides the character position of the substring specified by IN2 within the string
IN1. The search starts on the left. The character position of the first occurrence of
IN2 string is returned at OUT. If the string IN2 is not found in the string IN1, then -
1 is returned.

Supported Properties: None

Basic Instructions

SM Version 1.4 112 I4 Series

Table 7-144 Data types for the parameters

Parameter Data type Description

IN1 String Input string 1

IN2 String Input string 2

OUT String Combined string (string 1 + string 2)

Table 7-145 ENO status

ENO Description

True No error

False • P is greater than length of IN1

• The result length is greater than the max allowed string size

• P is less than 0

System Instructions

SM Version 1.4 113 I4 Series

8 System Instructions

This chapter describes instructions that are not related to the IEC programming standard, but are related to CPU
and its operating system hardware management. System instructions may vary from one CPU model to another
due to their structural differences.

System Instructions

SM Version 1.4 114 I4 Series

1. Memory management

1.1 RWW_NVMEM instruction

Table 8-1 Read/Write nonvolatile memory instruction

LAD/ FBD Description

Reads tags data from permanent memory or writes (when R/W=True)
them on permanent memory respect to the specified address. Writes the
status on the STT and processed bytes on the CNT.

Supported Properties: Inputs Count

Table 8-2 Data types for the parameters

Parameter Data type Description

R/W bool Specifies to read the data (R/W=False) or write (R/W=True)

ADDR AnyInt Byte address for reading or writing data

IN1…INn Variant Input tags 1…n

STT Int Operation status. -1: failed otherwise: Ok

CNT AnyInt The number of written or read bytes

2. System Time Management

2.1 GET_SYS_DT instruction

Table 8-3 Get CPU date and time instruction

LAD/ FBD Description

Gets the current CPU date and time.

Supported Properties: None

Table 8-4 Data types for the parameters

Parameter Data type Description

OUT AnyDate Current system date and time

DAY USINT Day of week

System Instructions

SM Version 1.4 115 I4 Series

2.2 SET_SYS_DT instruction

Table 8-5 Get CPU date and time instruction

LAD/ FBD Description

Sets the current CPU date and time.

Supported Properties: None

Table 8-6 Data types for the parameters

Parameter Data type Description

IN AnyDate Desired system date and time

DAY USINT Day of week

2.3 SYS_TICK instruction

Table 8-7 Get CPU tick time instruction

LAD/ FBD Description

Gets the current CPU tick time.

Supported Properties: None

Table 8-8 Data types for the parameters

Parameter Data type Description

OUT Time Current CPU tick time

3. Comm ports management

3.1 SET_SYS_IP

Table 8-9 Set system IP instruction

LAD/ FBD Description

Sets the IP parameters of the device by the specified parameters. Note
that parameters save only when the instruction executes in startup OB.

This instruction is applicable only for devices that have ethernet port.

Supported Properties: None

System Instructions

SM Version 1.4 116 I4 Series

Table 8-10 Data types for the parameters

Parameter Data type Description

IP IP_V4 Desired system IP address

MASK IP_V4 Desired system subnet mask

GATEWAY IP_V4 Desired system gateway address

Communication Instructions

SM Version 1.4 117 I4 Series

9 Communication
Instructions

PLCs use built-in ports, such as USB, Ethernet, RS-232, RS-485, or industrial CAN to communicate with external
devices (sensors, actuators) and systems (programming software, SCADA, HMI, other PLCs). Communication is
carried over various industrial network protocols, like Modbus RTU, Modbus TCP, or non-protocols for raw data
transmissions.

Communication Instructions

SM Version 1.4 118 I4 Series

1. RS-232 interface

An RS-232 interface is rated for distances up to 15 meters (50 feet). At least three wires are required for an RS-
232 interface. Wires are required for Transmit, Receive and Signal Ground. Some devices support additional
wires for communication handshaking. RS-232 hardware is a full-duplex configuration, having separate Transmit
and Receive lines. Each signal that transmits in an RS-232 data transmission system appears on the interface
connector as a voltage with reference to a signal ground. The RS-232 receiver typically operates within the
voltage range of +3 to +12 and -3 to -12 volts. The recommended cable is up to 15m (50ft) virtually any standard
shielded twisted pair with drain (Belden 9502 or equivalent).

2. RS-485 interface

For multi-drop operation, drivers must be capable of tri-state operation. An RS-485 interface requires at least two
wires. In a two-wire configuration, the same pair of wires is used for Transmit and Receive. The two-wire
configuration utilizes half-duplex communications. Transmit driver circuits are always taken off-line or tri-stated,
when not in use. This tri-state feature reduces the load on the network, allowing more devices, without the need
of special hardware. This interface also uses differential drivers, supporting distances up to 1200 meters (4000
feet). In a differential system the voltage produced by the driver appears across a pair of signal lines that transmit
only one signal. A differential line driver will produce a voltage from 2 to 6 volts across its A and B output
terminals and will have a signal ground (C) connection. Although proper connection to the signal ground is
important, it isn't used by a differential line receiver in determining the logic state of the data line. A differential
line receiver senses the voltage state of the transmission line across two signal input lines, A and B. It will also
have a signal ground (C) that is necessary in making the proper interface connection. If the differential input
voltage Vab is greater than +200 mV the receiver will have a specific logic state on its output terminal. If the input
voltage is reversed to less than -200 mV the receiver will create the opposite logic state on its output terminal.

2.1 Bias resistors

RS-485 networks often require bias, or pull-up and pull-down resistors. These resistors are used to stabilize the
network. By definition, in a MODBUS RTU network, it is the responsibility of the Master to provide this function.
Some systems may function without these stabilizing resistors, but may be more susceptible to communication
errors. Though the pull-up and pulldown resistors are the same, the value of these resistors varies from device to
device.

TIP

I4 PLCs have an internal biasing circuit so, there is no need for you to bias the bus.

2.2 Termination resistors

Termination resistors are often used to reduce reflections on the network. This problem occurs most with long
wires and high baud rates. Due to variations in wire and equipment, whether or not to use these terminators is
usually determined by system testing. The general rule is to add them only if needed. The resistors are typically
120 ohms, and installed across the Transmit and Receive wire pairs. Normally, one resistor is installed at each
end of each pair of wires.

Figure 9-1 Termination of a RS-485 bus

2.3 Shielding and grounding considerations

The signal ground conductor is often overlooked when ordering cable. An extra twisted pair must be specified to
have enough conductors to run a signal ground. A two-wire system then requires two twisted pairs.

RT 120Ω RT 120Ω

Communication Instructions

SM Version 1.4 119 I4 Series

It is often hard to quantify if shielded cable is required in an application or not. Since the added cost of shielded
cable is usually minimal it is worth installing the first time.

2.4 Cable requirements

The type of wire to use will vary with required length. Wire with twisted pairs and an overall shield is used most
often. The shield is tied to earth ground or chassis, and typically at one end only (generally at the Modbus Master
side). The shield is not to be used as a signal common or ground. The recommended cable is up to 1200m
(4000ft) 24 AWG twisted pair with foil shield and drain wire on each pair (Belden 9841 for 2-wire and 9729 for 4-
wire or equiv.)

3. Controller Area Network (CAN) interface

The CAN communication protocol is a carrier-sense, multiple-access protocol with collision detection and
arbitration on message priority (CSMA/CD+AMP). CSMA means that each node on a bus must wait for a
prescribed period of inactivity before attempting to send a message. CD+AMP means that collisions are resolved
through a bit-wise arbitration, based on a preprogrammed priority of each message in the identifier field of a
message. The higher priority identifier always wins bus access. That is, the last logic high in the identifier keeps
on transmitting because it is the highest priority. Since every node on a bus takes part in writing every bit "as it is
being written," an arbitrating node knows if it placed the logic-high bit on the bus.

The ISO-11898:2003 Standard, with the standard 11-bit identifier, provides for signaling rates from 125 kbps to 1
Mbps. The standard was later amended with the “extended” 29-bit identifier. The standard 11-bit identifier field
provides for 211, or 2048 different message identifiers, whereas the extended 29-bit identifier in provides for 229,
or 537 million identifiers. Bus access is event-driven and takes place randomly. If two nodes try to occupy the bus
simultaneously, access is implemented with a nondestructive, bit-wise arbitration. Nondestructive means that the
node winning arbitration just continues on with the message, without the message being destroyed or corrupted
by another node.

The allocation of priority to messages in the identifier is a feature of CAN that makes it particularly attractive for
use within a real-time control environment. The lower the binary message identifier number, the higher its priority.
An identifier consisting entirely of zeros is the highest priority message on a network because it holds the bus
dominant the longest. Therefore, if two nodes begin to transmit simultaneously, the node that sends a last
identifier bit as a zero (dominant) while the other nodes send a one (recessive) retains control of the CAN bus
and goes on to complete its message. A dominant bit always overwrites a recessive bit on a CAN bus.

Figure 9-2 The Inverted Logic of a CAN Bus

The data rate of the bus can reach up to 1 Mbps (for 30m length cable) or up to 8 Mbps for FD (Flexible Datarate)
CAN.

4. Ethernet interface

Ethernet was first developed in the 1970s and was later standardized as IEEE 802.3. Ethernet is the group of
local area network (LAN) products covered by IEEE 802.3—a group of Institute of Electrical and Electronics
Engineers (IEEE) standards that define the physical layer and data link layer of a wired Ethernet media access
control.1 These standards also describe the rules for configuring an Ethernet network and how the elements of
the network work with one another. Ethernet allows computers to connect over one network. Ethernet is the
global standard for a system of wires and cables to conjoin multiple computers, devices, machines, etc., over an

VCANH

VCANL

0
Dominant

1
Recessive

1
Recessive

CANH

CANL

Communication Instructions

SM Version 1.4 120 I4 Series

organization’s single network so that all the computers can communicate with one another. Ethernet began as a
single cable, making it possible for multiple devices to be connected on one network. Now, an Ethernet network
can be expanded to new devices as needed. Ethernet is now the most popular and widely used network
technology in the industry. With industrial Ethernet, data transmission rates range from 10 Mbps to 1 Gbps.
However, 100 Mbps is the most popular speed used in industrial Ethernet applications.

While there are several Industrial Ethernet protocols to support a variety of communication requirements in the
industrial automation, there are four major protocols.

4.1 Modbus TCP/IP

Modbus TCP/IP was the first Industrial Ethernet protocol introduced, and it is essentially a traditional Modbus
communication that is compressed within an Ethernet transport layer protocol for transferring discrete data
between control devices. It uses a simple master-slave communication where the “slave” node will not transmit
data without a request from the “master” node, but it is not considered a real-time protocol.

4.2 EtherCAT

Introduced in 2003, EtherCAT is an Industrial Ethernet protocol that offer real-time communication in a
master/slave configuration for automation systems. The key element of EtherCAT is the ability for all networked
slaves to extract only the relevant information they need from the data packets and insert data into the frame as it
transmits downstream.

4.3 Ethernet/IP

Initially released in 2000, Ethernet/IP is a widely used application-layer Industrial Ethernet protocol supported by
the Open Device Vendors Association (ODVA) and supplied primarily by Rockwell Automation. It is the only
Industrial Ethernet protocol that is based entirely on Ethernet standards and uses standard Ethernet physical,
data link, network and transport layers. Since it uses standard Ethernet switching, it can support an unlimited
number of nodes. However, it requires limited range to avoid latency and support real-time communication.

4.4 PROFINET

An application protocol developed by Siemens in conjunction with member companies of a Profibus user
organization. It essentially extends Profibus I/O controller communication to Ethernet using special switches that
are integrated into devices.

5. Programming instructions

5.1 Serial

5.1.1 SERIAL_INIT instruction

Table 9-1 Serial port initialize instruction

LAD/ FBD Description

SERIAL_INIT allows you to change port parameters such as baud rate
from your program.

You can set up the initial static configuration of the port in the device
configuration properties, or just use the default values. You can
execute the SERIAL_INIT instruction in your program to change the
configuration. Data bits will be set always to 8.

Supported Properties: None

Communication Instructions

SM Version 1.4 121 I4 Series

Table 9-2 Data types for the parameters

Parameter Data type Description

PORT AnyInt Desired system port identifier. It starts by 0. For other ports identifier see device
technical data

BAUDRATE AnyInt Port baud rate. 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600,
76800, 115200

PARITY AnyInt Port parity. 0 = No parity, 1 = Even parity, 2 = Odd parity

STOP_BITS AnyInt Stop bits. 0 = No stop bit, 1 = One stop bit, 2 = Two stop bit

Table 9-3 ENO status

ENO Description

True No error

False One or more configs is not specified correctly

5.1.2 SERIAL_GET_STAT instruction

Table 9-4 Serial port get status instruction

LAD/ FBD Description

SERIAL_INIT allows you to change port parameters such as baud rate
from your program.

You can set up the initial static configuration of the port in the device
configuration properties, or just use the default values. You can
execute the SERIAL_INIT instruction in your program to change the
configuration. Data bits will be set always to 8.

Supported Properties: None

Table 9-5 Data types for the parameters

Parameter Data type Description

PORT AnyInt Desired system port identifier. It starts by 0. For other ports identifier see device
technical data

BUF_LVL AnyInt Current received bytes count in the buffer.

OVR Bool Overflow flag. When the serial receiving buffer overflows it means that the
incoming data length is greater than the buffer size so, a part of data has been
dropped

Busy Bool Busy flag. When the serial port is receiving data or transmitting data this flag will
be True.

Table 9-6 ENO status

ENO Description

True No error

False One or more configs is not specified correctly

Communication Instructions

SM Version 1.4 122 I4 Series

5.1.3 SERIAL_READ_BUF instruction

Table 9-7 Serial read buffer instruction

LAD/ FBD Description

SERIAL_READ_BUF allows you to read the input data received in
serial buffer and store it in an external Byte array.

Supported Properties: None

Table 9-8 Data types for the parameters

Parameter Data type Description

PORT AnyInt Desired system port identifier. It starts by 0. For other ports identifier see device
technical data

BUFFER Byte[*] Destination buffer for storing data

COUNT AnyInt The length of the data stored in the buffer

Table 9-9 ENO status

ENO Description

True No error

False One or more configs is not specified correctly

5.1.4 SERIAL_SEND_BUF instruction

Table 9-10 Serial send buffer instruction

LAD/ FBD Description

SERIAL_SEND_BUF allows you to transmit the input data stored in
Byte array buffer on the serial port.

Supported Properties: None

Table 9-11 Data types for the parameters

Parameter Data type Description

PORT AnyInt Desired system port identifier. It starts by 0. For other ports identifier see device
technical data

ADDR AnyInt The start position on the buffer to be sent

COUNT AnyInt The length of data to be sent

BUFFER Byte[*] Source buffer containing data

Communication Instructions

SM Version 1.4 123 I4 Series

Table 9-12 ENO status

ENO Description

True No error

False One or more configs is not specified correctly or the port is busy

6. Modbus communication

6.1 Overview of Modbus RTU and TCP communication

6.1.1 Modbus function codes

• A CPU operating as a Modbus RTU master (or Modbus TCP client) can read/write both data and I/O
states in a remote Modbus RTU slave (or Modbus TCP server). Remote data can be read and
processed in the user program.

• A CPU operating as a Modbus RTU slave (or Modbus TCP server) allows a supervisory device to
read/write both data and I/O states in a remote CPU. The supervisor device can write new values in
remote CPU memory that can be processed in the user program.

Table 9-13 Read data functions: Read remote I/O and program data

Modbus function code Read slave (server) functions - standard addressing

01 Read output bits: 1 to 2000 bits per request

02 Read input bits: 1 to 2000 bits per request

03 Read Holding registers: 1 to 125 words per request

04 Read input words: 1 to 125 words per request

Table 9-14 Write data functions: Write remote I/O and modify program data

Modbus function code Write slave (server) functions - standard addressing

05 Write one output bit: 1 bit per request

06 Write one holding register: 1 word per request

16 Write one or more holding registers: 1 to 123 words per request

• Modbus ID 0 broadcasts a message to all slaves (with no slave response). The broadcast function is not
available for Modbus TCP, because communication is connection based.

Table 9-15 Modbus network station addresses

Station Address

RTU station 1 to 247

TCP station IP address and port number

6.1.2 Modbus memory addresses

The actual number of Modbus memory addresses available depends on the CPU model, how much application
memory exists, and how much CPU memory is used by other program data.
The table below gives the nominal value of the address range.

Table 9-16 Modbus memory addresses

Station Address range

RTU station 1K

TCP station 1K

6.1.3 Modbus RTU communication

Modbus RTU (Remote Terminal Unit) is a standard network communication protocol that uses the RS485
electrical connection for serial data transfer between Modbus network devices.

Communication Instructions

SM Version 1.4 124 I4 Series

Modbus RTU uses a master/slave network where all communications are initiated by a single Master device and
slaves can only respond to a master’s request. The master sends a request to one slave address and only that
slave address responds to the command.

6.1.4 Modbus TCP communication

Modbus TCP (Transmission Control Protocol) is a standard network communication protocol that uses the
Ethernet connector on the CPU for TCP/IP communication. No additional communication hardware module is
required.

Modbus TCP uses Open User Communications (OUC) connections as a Modbus communication path. Multiple
client-server connections may exist. Mixed client and server connections are supported up to the maximum
number of connections allowed by the CPU model (see technical data).

A Modbus TCP client (master) must control the client-server connection with the DISCONN parameter. The basic
Modbus client actions are shown below.

Initiate a connection to a particular server (slave) IP address and IP port number

Initiate client transmission of a Modbus messages and receive the server responses

When desired, initiate the disconnection of client and server to enable connection with a different server.

TIP

You can change the default port number for Modbus TCP server in Online & Diagnostic/Options.

6.1.5 Modbus RTU instructions in your program

• MB_MASTER: The Modbus master instruction enables the CPU to act as a Modbus RTU master device
and communicate with one or more Modbus slave devices.

• MB_SLAVE: The Modbus slave instruction enables the CPU to act as a Modbus RTU slave device and
communicate with a Modbus master device.

6.1.6 Modbus TCP instructions in your program

• MB_CLIENT: Make client-server TCP connection, send command message, receive response, and
control the disconnection from the server.

• MB_SERVER: Connect to a Modbus TCP client upon request, receive Modbus message, and send
response.

6.2 Modbus RTU

6.2.1 MB_SLAVE

LAD/ FBD Description

The MB_SLAVE instruction allows your program to communicate as
a Modbus slave through a RS485. When a remote Modbus RTU
master issues a request, your user program responds to the request
by MB_SLAVE execution. Your program must config the port by an
execution of the SERIAL_INIT instruction before start the
MB_SLAVE.

Supported Properties: None

Communication Instructions

SM Version 1.4 125 I4 Series

Table 9-17 Data types for the parameters

Parameter Data type Description

PORT AnyInt Desired system port identifier. It starts by 0. For other ports identifier see device
technical data

SLAVE_ID AnyInt The station address of the Modbus slave in standard addressing range (1 to
247)

REG_ADDR AnyInt Pointer to the Modbus Holding Register in the bit memory (M). Specifies the
starting register address (word address) of the data to be accessed by other

masters in M memory.

REG_COUNT AnyInt Holding Registers data Length: Specifies the number of words to be accessed
in by other masters in M memory.

STOP Bool Starts or stops the MB_SLAVE functions.

• Null or False: Start

• True: Stop

Table 9-18 ENO status

ENO Description

True No error

False One or more configs is not specified correctly:

• The serial port is not initialized

• PORT is out of range

• SLAVE_ID = 0

• REG_ADDR + REG_COUNT is greater than the allowed memory area size

• REG_COUNT is greater than 1024

Table 9-19 Supported function codes and mapping of Modbus addresses to the

Function
code

Address range Bit memory (M) range Operation and data

3 0 to
REG_COUNT-1

REG_ADDR to REG_COUNT-1 Read Holding registers

6 Write one holding register

16 Write multiple holding registers

The following table shows examples of Modbus address to holding register mapping that is used for Modbus
function codes 03 (read words), 06 (write word), and 16 (write words). The actual upper limit of bit memory (M)
address is determined by the maximum application memory limit and M memory limit, for each CPU model.

Table 9-20 Mapping of Modbus addresses to CPU memory

Modbus Master Address Word address Example for M address when REG_ADDR=16

0 REG_ADDR %MW32

1 REG_ADDR+1 %MW34

2 REG_ADDR+2 %MW36

3 REG_ADDR+3 %MW38

4 REG_ADDR+4 %MW40

5 REG_ADDR+5 %MW42

Modbus slave communication rules

• SERIAL_INIT must be executed to configure a port, before a MB_SLAVE instruction can communicate
through that port.

• If a port is to respond as a slave to a Modbus master, then do not program that port with the
MB_MASTER instruction.

Communication Instructions

SM Version 1.4 126 I4 Series

• Only one instruction call of MB_SLAVE can be used with a given port, otherwise erratic behavior may
occur.

• The MB_SLAVE instruction must execute only one time in your program. Then its internal functions will
be executed periodically at a rate that allows it to make a timely response to incoming requests from a
Modbus master. It is recommended that you execute MB_SLAVE in a Startup OB or in other OBs only
one time at the CPU startup. Executing MB_SLAVE from a cyclic interrupt OB is not possible.

Modbus signal timing

Modbus slave functions will be executed periodically after calling MB_SLAVE instruction to receive each request
from the Modbus master and then respond as required. The frequency of execution for MB_SLAVE is dependent
upon the response timeout period of the Modbus master. This is illustrated in the following diagram.

The response timeout period is the amount of time a Modbus master waits for the start of a response from a
Modbus slave. This time period is not defined by the Modbus protocol, but is a parameter of each Modbus
master. The frequency of execution (the time between one execution and the next execution) of MB_SLAVE
must be based on the particular parameters of your Modbus master.

6.2.2 Modbus RTU slave example program

SERIAL_INIT shown below Initializes the RS485 port parameters at the CPU startup by the first scan flag or each
time they are changed by an HMI device (by the “Reconfig” flag). Then, the Modbus slave stops and starts again
in order to new configuration take effect.

The Modbus holding register is configured for 512 words starting at %MW0.

CRC

CRC

CRC

ADR ADR

ADR FC

FC DATA

DATA

Response timeout period

WLPHRXW
SHULRG Master sends Slave sends

Start
interval Start

Interval = 3.5 characters times

Response
delay time

Communication Instructions

SM Version 1.4 127 I4 Series

6.2.3 MB_MASTER

Table 9-21 MB_MASTER instruction

LAD/ FBD Description

The MB_MASTER instruction communicates as a Modbus master
using a port that was configured by a previous execution of the
SERIAL_INIT instruction.

Supported Properties: None

Table 9-22 Data types for the parameters

Parameter Data type Description

PORT AnyInt Desired system port identifier. It starts by 0. For other ports identifier see device
technical data

ID AnyInt Modbus RTU station address. The value of 0 is reserved for broadcasting a
message to all Modbus slaves. Modbus function codes 05, 06, 15 and 16 are
the only function codes supported for broadcast.

FC AnyInt Function code.

REG_ADDR AnyInt Starting Address in the slave: Specifies the starting register address (word
address) of the data to be accessed in the Modbus slave.

REG_COUNT AnyInt Data Length: Specifies the number of bits or words to be accessed in this
request. See the Modbus functions table below for valid lengths.

R/W32 Bool False = Normal Modbus operation

True = Concatenates two consecutive registers. When the R/W32 is True the
BUFFER must be DWord array.

TIMEOUT AnyInt Amount of time (in milliseconds) to wait for a blocked Modbus Master
instruction before removing this instruction as being ACTIVE. This can occur,
for example, when a Master request has been issued and then the program
stops calling the Master function before it has completely finished the request.
The time value must be greater than 0 and less than 65535 milliseconds, or an

error occurs.

BUFFER AnyBit[*] Source buffer containing data. When you access data by 01,02 and 05 the
BUFFER data type must be an array of Bool, otherwise an array of Word.

STAT AnyInt Execution condition code

ERROR AnyInt The ERROR bit is True for one scan, after the MB_CLIENT execution was
terminated with an error. The error code value at the STAT parameter is valid

only during the single cycle where ERROR = True.

Busy Bool • False = No MB_CLIENT operation in progress

• True = MB_CLIENT operation in progress

Communication Instructions

SM Version 1.4 128 I4 Series

Table 9-23 ENO status

ENO Description

True No error

False One or more configs is not specified correctly

• Invalid value for TIMEOUT

• Invalid datatype for BUFFER

Modbus master communication rules

• SERIAL_INIT must be executed to configure a port before a MB_MASTER instruction can communicate
with that port.

• If a port is to be used to initiate Modbus master requests, that port should not be used by MB_SLAVE .
One or more MB_MASTER execution can be used with that port.

• The Modbus instructions do not use communication interrupt events to control the communication
process. Your program must poll the MB_MASTER instruction for transmit and receive complete
conditions.

• It is recommended that you call all MB_MASTER execution for a given port from a loop executer OB.
Modbus master instructions may execute in only one of the program cycle or cyclic/time of day
execution levels. They must not execute in both execution priority levels. Pre-emption of a Modbus
Master instruction by another Modbus master instruction in a higher priority execution priority level will
result in improper operation. Modbus master instructions must not execute in the startup or stop OBs.

• Once a master instruction initiates a transmission, this instruction must be continually executed with the
EN input enabled until a BUSY=False state or ERROR<>0 state is returned. A particular MB_MASTER
is considered active until one of these two events occurs. While an instruction is active, any call to any
other instruction will result in an error. If the continuous execution of the original instruction stops, the
request state remains active for a period of time specified by the TIMEOUT input. Once this period of
time expires, the next master instruction called will become the active instance. This prevents a single
Modbus master instance from monopolizing or locking access to a port. If the original active instruction
is not enabled then the next instruction will be executed.

Modbus function codes

The MB_MASTER instruction uses a Function Code input (FC) determine the Function Code that is used in the
actual Modbus message. The following table shows the eligible Modbus function codes.

Table 9-24 Modbus functions

Function code Data length Operation and data

3 1 to 123 Read Holding registers

6 1 Write one holding register

16 1 to 123 Write multiple holding registers

Status codes

Table 9-25 MB_MASTER execution condition codes (communication and configuration errors)

STATUS Description

0 No error

255 Slave timeout. Check baud rate, parity, and wiring of slave.

Invalid Modbus station address

18 Invalid function code

16 Invalid port ID value or error with INIT_SERIAL instruction

129 Invalid Data Address value

17 Invalid Data Length value

254 The message was terminated as a result of the specified length exceeding the total
buffer size.

130 Data value error

Communication Instructions

SM Version 1.4 129 I4 Series

6.2.4 Modbus RTU master example program

RS-485 port is initialized only once during start-up by using SERIAL_INIT triggered by the first scan flag.
Execution of SERIAL_INIT in this manner should only be done when the serial port configuration will not change
at runtime.

One MB_MASTER instruction is used in the cyclic program OB to communicate with a single slave. Additional
MB_MASTER instructions can be used in the OB to communicate with other slaves, or one MB_MASTER
instruction could be re-used to communicate with additional slaves.

6.3 Modbus TCP

6.3.1 MB_SERVER

Table 9-26 MB_SERVER instruction

LAD/ FBD Description

MB_SERVER communicates as a Modbus TCP server through the
Ethernet connector on the CPU (all CPU models may not must
support). No additional communication hardware module is required.
MB_SERVER can accept a request to connect with Modbus TCP
client, receive a Modbus function request, and send a response
message.

Communication Instructions

SM Version 1.4 130 I4 Series

Supported Properties: None

Table 9-27 Data types for the parameters

Parameter Data type Description

IP_LIST IP_V4[*] An array of IP_V4 structure for eligible clients that connect this server. All
requests from other clients that are not mentioned in this array will be ignored.

The maximum length of the array is 4.

REG_ADDR AnyInt Pointer to the Modbus Holding Register in the bit memory (M). Specifies the
starting register address (word address) of the data to be accessed by other
masters in M memory.

REG_COUNT AnyInt Holding Registers data Length: Specifies the number of words to be accessed
in by other masters in M memory.

STOP Bool Starts or stops the MB_SERVER functions.

• Null or False: Start

• True: Stop

This allows your program to control when a connection is accepted. Whenever

this input is enabled, no other operation will be attempted.

Table 9-28 ENO status

ENO Description

True No error

False One or more configs is not specified correctly

• REG_ADDR + REG_COUNT is greater than the allowed memory area size

• REG_COUNT is greater than 1024

• IP_V4 array length is greater than 4

Table 9-29 Supported function codes and mapping of Modbus addresses to the

Function
code

Address range Bit memory (M) range Operation and data

03 0 to
REG_COUNT-1

REG_ADDR to REG_COUNT-1 Read Holding registers

06 Write one holding register

16 Write multiple holding registers

The following table shows examples of Modbus address to holding register mapping that is used for Modbus
function codes 03 (read words), 06 (write word), and 16 (write words). The actual upper limit of bit memory (M)
address is determined by the maximum application memory limit and M memory limit, for each CPU model.

Table 9-30 Mapping of Modbus addresses to CPU memory

Modbus Client Address Word address Example for M address when REG_ADDR=16

0 REG_ADDR %MW32

1 REG_ADDR+1 %MW34

2 REG_ADDR+2 %MW36

3 REG_ADDR+3 %MW38

4 REG_ADDR+4 %MW40

5 REG_ADDR+5 %MW42

TIP

Multiple server connections may be created. This permits a single PLC to establish concurrent connections to
multiple Modbus TCP clients. The maximum number of Open User Communications connections allowed by
the PLC is 4.

Communication Instructions

SM Version 1.4 131 I4 Series

TIP

The default MB_SERVER port is 502. If you want to change the port value, go to “Online &
Diagnostic”/Options.

6.3.2 MB_SERVER example

The Modbus holding register is configured for 1024 words starting at %MW0.

The IPList is an array with two elements of IP_V4 structure.

Two clients (192.168.1.32 and 192.168.1.33) will be allowed to transfer data to the server.

6.3.3 MB_CLIENT

Table 9-31 MB_CLIENT instruction

LAD/ FBD Description

MB_CLIENT communicates as a Modbus TCP client through the
Ethernet connector on the CPU. No additional communication
hardware module is required.

MB_CLIENT can make a client-server connection, send a Modbus
function request, receive a response, and control the disconnection
from a Modbus TCP server.

Supported Properties: None

Table 9-32 Data types for the parameters

Parameter Data type Description

REQ Bool False = No Modbus communication request

True = Request to communicate with a Modbus TCP server

R/W Bool Specifies condition whether write data to server (Function code 16) or read data
from server (Function code 03).

REG_ADDR AnyInt Starting Address in the slave: Specifies the starting register address (word
address) of the data to be accessed in the Modbus slave.

Communication Instructions

SM Version 1.4 132 I4 Series

REG_COUNT AnyInt Data Length: Specifies the number of bits or words to be accessed in this
request. See the Modbus functions table below for valid lengths.

IP IP_V4 Modbus TCP server IP address.32-bit IPv4 IP address of the Modbus TCP
server to which the client will connect and communicate using the Modbus TCP
protocol.

ID AnyInt ID for Modbus TCP server socket. You can communicate concurrently up to 2
Modbus TCP server. 0 or 1

TIMEOUT AnyInt Amount of time (in milliseconds) to wait for a blocked Modbus Client instruction
before removing this instruction as being ACTIVE. This can occur, for example,
when a client request has been issued and then the program stops calling the
client function before it has completely finished the request.

DISCONN Bool The DISCONN parameter allows your program to control connection and
disconnection with a Modbus server device.

If DISCONN <> True and a connection does not exist, then MB_CLIENT
attempts to make a connection to the assigned IP address and port number. If
DISCONNECT = True and a connection exists, then a disconnect operation is
attempted. Whenever this input is enabled, no other operation will be
attempted.

BUFFER Word[*] Source buffer containing data.

STAT AnyInt Execution condition code.

ERROR Bool The ERROR bit is True for one scan, after the MB_CLIENT execution was
terminated with an error. The error code value at the STAT parameter is valid
only during the single cycle where ERROR = True.

Busy Bool • False = No MB_CLIENT operation in progress

• True = MB_CLIENT operation in progress

Table 9-33 ENO status

ENO Description

True No error

False One or more configs is not specified correctly

REQ parameter

False = No Modbus communication request True = Request to communicate with a Modbus TCP server If no
instruction of MB_CLIENT is active and parameter DISCONN=False, when REQ=True a new Modbus request
will start. If the connection is not already established then a new connection will be made.

As soon as the current request is completed, a new request can be processed if MB_CLIENT is executed with
REQ=True.

BUFFER parameter

Assigns a buffer to store data read/written to/from a Modbus TCP server. The data buffer must be an array of
Word in local or global memory.

Status codes

Table 9-34 MB_MASTER execution condition codes (communication and configuration errors)

STATUS Description

0 Disconnected from server

256 Connecting to server

257 Connected to server

258 Server timeout. Check server IP address, port and wiring

21 The message was terminated as a result of the specified length exceeding the total
buffer size.

22 Server error

23 Invalid Data Address value, Invalid Data Length value

Only 1 client can be active at any given time. Once a client completes its execution, the next client begins
execution. Your program is responsible for the order of execution.

Communication Instructions

SM Version 1.4 133 I4 Series

Modbus client requests can be sent over different connections. To accomplish this, different IP addresses, and
connection IDs must be used.

NOTICE

You can connect to a maximum of two different servers by MB_CLIENT instructions simultaneously.

6.3.4 MB_CLIENT example

Read holding register words. Request to write on server holding registers.

IEC 61131-3 Solutions

SM Version 1.4 134 I4 Series

10 IEC 61131-3 Solutions

This chapter provides IEC 61131-3 examples implementation that you can apply in your projects based on your
needs. To see the source of these solutions you can see ANNEX F in Second edition of IEC 61131-3 standard
documentation. All of these solutions are pre-compiled function blocks written by FBD language. By placing each
of them on a network its source FB will be included in system program blocks.

IEC 61131-3 Solutions

SM Version 1.4 135 I4 Series

1. CMD_MONITOR instruction

Table 10-1 CMD_MONITOR FB instruction

LAD/ FBD Description

Example function block CMD_MONITOR illustrates the control of an
operative unit which is capable of responding to a Boolean command
(the CMD output) and returning a Boolean feedback signal (the FDBK
input) indicating successful completion of the commanded action. The
function block provides for manual control via the MAN_CMD input, or
automated control via the AUTO_CMD input, depending on the state of
the AUTO_MODE input (0 or 1 respectively). Verification of the
MAN_CMD input is provided via the MAN_CMD_CHK input, which must
be 0 in order to enable the MAN_CMD input.

If confirmation of command completion is not received on the FDBK input
within a predetermined time specified by the T_CMD_MAX input, the
command is cancelled and an alarm condition is signaled via the ALRM
output. The alarm condition may be cancelled by the ACK (acknowledge)
input, enabling further operation of the command cycle.

Supported Properties: None

Table 10-2 Data types for the parameters

Parameter Data type Description

AUTO_CMD Bool Automated command

AUTO_MODE Bool AUTO_CMD enable

MAN_CMD Bool Manual Command

MAN_CMD_CHK Bool Negated MAN_CMD to debounce

T_CMD_MAX Time Max time from CMD to FDBK

FDBK Bool Confirmation of CMD completion by operative unit

ACK Bool Acknowledge/cancel ALRM

CMD Bool Command to operative unit

ALRM Bool T_CMD_MAX expired without FDBK

2. STACK_INT FB instruction

Table 10-3 STACK_INT FB instruction

LAD/ FBD Description

This function block provides a stack of up to 128 integers. The usual
stack operations of PUSH and POP are provided by edge-triggered
Boolean inputs. An overriding reset (R1) input is provided; the maximum
stack depth (N) is determined at the time of resetting. In addition to the
top-of-stack data (OUT), Boolean outputs are provided indicating stack
empty and stack overflow states.

Supported Properties: None

IEC 61131-3 Solutions

SM Version 1.4 136 I4 Series

Table 10-4 Data types for the parameters

Parameter Data type Description

PUSH Bool Basic stack operations

POP Bool Basic stack operations

R1 Bool Over-riding reset

XIN Int Input to be pushed

N Int Maximum depth after reset

EMPTY Bool Stack empty

OFLO Bool Stack overflow

OUT Int Top of stack data

3. LAG1 FB instruction

Table 10-5 LAG1 FB instruction

LAD/ FBD Description

This function block implements a first-order lag filter.

Supported Properties: None

Table 10-6 Data types for the parameters

Parameter Data type Description

RUN Bool 1 = run, 0 = reset

XIN Real Input variable

TAU Time Filter time constant

CYCLE Time Sampling time interval

XOUT Real Filtered output

4. DELAY FB instruction

Table 10-7 DELAY FB instruction

LAD/ FBD Description

This function block implements an N-sample delay.

Supported Properties: None

IEC 61131-3 Solutions

SM Version 1.4 137 I4 Series

Table 10-8 Data types for the parameters

Parameter Data type Description

RUN Bool 1 = run, 0 = reset

XIN Real Input variable

N Int 0 <= N < 12

XOUT Real Delayed output

5. AVERAGE FB instruction

Table 10-9 AVERAGE FB instruction

LAD/ FBD Description

This function block implements a running average over N samples.

Supported Properties: None

Table 10-10 Data types for the parameters

Parameter Data type Description

RUN Bool 1 = run, 0 = reset

XIN Real Input variable

N Int 0 <= N < 12

XOUT Real Averaged output

6. INTEGRAL FB instruction

Table 10-11 INTEGRAL FB instruction

LAD/ FBD Description

This function block implements integration over time.

Supported Properties: None

Table 10-12 Data types for the parameters

Parameter Data type Description

RUN Bool 1 = integrate, 0 = hold

IEC 61131-3 Solutions

SM Version 1.4 138 I4 Series

R1 Bool Overriding reset

XIN Real Input variable

X0 Real Initial value

CYCLE Time Sampling period

Q Bool NOT R1

XOUT Real Integrated output

7. DERIVATIVE FB instruction

Table 10-13 DERIVATIVE FB instruction

LAD/ FBD Description

This function block implements differentiation with respect to time.

Supported Properties: None

Table 10-14 Data types for the parameters

Parameter Data type Description

RUN Bool 0 = reset

XIN Real Input to be differentiated

CYCLE Time Sampling period

XOUT Real Differentiated output

8. HYSTERESIS FB instruction

Table 10-15 HYSTERESIS FB instruction

LAD/ FBD Description

This function block implements Boolean hysteresis on the difference of
REAL inputs.

Supported Properties: None

Table 10-16 Data types for the parameters

Parameter Data type Description

XIN1 Real Input 1

XIN2 Real Input 2

EPS Real Epsilon

Q Bool XIN1 > XIN2 + EPS = 1, XIN1 - EPS < XIN2 = 1

IEC 61131-3 Solutions

SM Version 1.4 139 I4 Series

9. LIMITS_ALARM FB instruction

Table 10-17 LIMITS_ALARM FB instruction

LAD/ FBD Description

This function block implements a high/low limit alarm with hysteresis on
both outputs.

Supported Properties: None

Table 10-18 Data types for the parameters

Parameter Data type Description

H Real High limit

X Real Variable value

L Real Lower limit

EPS Real Hysteresis

QH Bool High flag

Q Bool Alarm output

QL Bool Low flag

10. ANALOG_MONITOR FB instruction

Table 10-19 ANALOG_MONITOR FB instruction

LAD/ FBD Description

This function block implements analog signal monitoring.

Supported Properties: None

Table 10-20 Data types for the parameters

Parameter Data type Description

X Real Variable value

L ANALOG_LIMITS Analog monitoring parameters structure

SE Bool Signal error

ME Bool Measurement error

IEC 61131-3 Solutions

SM Version 1.4 140 I4 Series

ALRM Bool Alarm

WARN Bool Warning

QH Bool 1 = Signal high

11. IEC_PID FB instruction

Table 10-21 IEC_PID FB instruction

LAD/ FBD Description

This function block implements Proportional + Integral + Derivative
control action. The functionality is derived by functional composition of
previously declared function blocks.

Supported Properties: None

Table 10-22 Data types for the parameters

Parameter Data type Description

AUTO Bool 0 - manual, 1 - automatic

PV Real Process variable

SP Real Set point

X0 Real Manual output adjustment typically from transfer station

KP Real Proportionality constant

TR Real Reset time

TD Real Derivative time constant

CYCLE Time Sampling period

XOUT Real Control signal

IEC 61131-3 Solutions

SM Version 1.4 141 I4 Series

12. RAMP FB instruction

Table 10-23 RAMP FB instruction

LAD/ FBD Description

This function block implements a time-based ramp.

Supported Properties: None

Table 10-24 Data types for the parameters

Parameter Data type Description

RUN Bool 0 - track X0, 1 - ramp to/track X1

X0 Real Start value

X1 Real Target value

TR Real Ramp duration

CYCLE Time Sampling period

BUSY Bool BUSY = 1 during ramping period

XOUT Real Output value

13. TRANSFER FB instruction

Table 10-25 TRANSFER FB instruction

LAD/ FBD Description

This function block implements a manual transfer station with bump less
transfer.

Supported Properties: None

IEC 61131-3 Solutions

SM Version 1.4 142 I4 Series

Table 10-26 Data types for the parameters

Parameter Data type Description

AUTO Bool 1 - track X0, 0 - ramp or hold

XIN Real Typically, from PID Function Block

FAST_RATE Real Up ramp slopes

SLOW_RATE Real Down ramp slopes

FAST_UP Bool Typically pushbuttons

SLOW_UP Bool

FAST_DOWN Bool

SLOW_DOWN Bool

CYCLE Time Sampling period

XOUT Real Output value

Monitor and Control Instructions

SM Version 1.4 143 I4 Series

11 Monitor and Control
Instructions

This chapter will help you when selecting, configuring, and assigning parameters to a controller block for your
control task. It introduces you to the functions of the configuration tool and explains how you use it.

To understand this chapter, you should be familiar with automation and process control engineering concepts.

Monitor and Control Instructions

SM Version 1.4 144 I4 Series

1. Designing Digital Controllers

1.1 Process Characteristics and Control

1.1.1 Process Characteristics and the Controller

The static behavior (gain) and the dynamic characteristics (time lag, dead time, reset times etc.) of the process to
be controlled have a significant influence on the type and time response of the signal processing in the controller
responsible for keeping the process stable or changing the process according to a selected time schedule.

The process has a special significance among the components of the control loop. Its characteristics are fixed
either by physical laws or by the machinery being used and can hardly be influenced. A good control result is
therefore only possible by selecting the controller type best suited to the particular process and by adapting the
controller to the time response of the process.

Precise knowledge of the type and characteristic data of the process to be controlled is indispensable for
structuring and designing the controller and for selecting the dimensions of its static (P mode) and dynamic (I and
D modes) parameters.

1.1.2 Process Analysis

To design the controller, you require exact data from the process that you obtain by means of a transfer function
following a step change in the setpoint. The (graphical) analysis of this (time) function allows you to draw
conclusions about the selection of the most suitable controller function and the dimensions of the controller
parameters to be set.

Before describing the use of the Configuration Standard PID Control tool the next sections briefly look at the most
common processes involved in automation. You may possibly require this information to help you to decide the
best procedure for the analysis and simulation of the process characteristics.

1.1.3 Type and Characteristics of the Process

The following processes will be analyzed in greater detail:

• Self-regulating process

• Self-regulating process with dead time

• Process with integral action

Self-regulating Process

Most processes are self-regulating, in other words, after a step change in the manipulated variable, the process
(controlled) variable approaches a new steady-state value. The time response of the system can therefore be
determined by plotting the curve of the process variable with respect to time PV(t) after a step change in the
manipulated variable MV by a value greater than 1.5% of its total range.

Monitor and Control Instructions

SM Version 1.4 145 I4 Series

Figure 11-1 Step Response of a Self-Regulating Process (first order)

If the process response within the manipulated variable range is linear, the transfer coefficient KS indicates the
gain of the control loop. From the ratio of the time lag to the settling time Tu/Tg, the controllability of the process
can be estimated. The smaller this value is, in other words the smaller the time lag relative to the settling time,
the better the process can be controlled.

According to the values u and Tg, the time response of a process can be roughly classified as follows:

Tu < 0.2 min and Tg < 2 min → fast process

Tu > 0.5 min and Tg > 5 min → slow process

The absolute value of the settling time therefore has a direct influence on the sampling time of the controller: The
higher Tg is, in other words the slower the process reaction, the higher the sampling time that can be selected.

Self-Regulating Process with Dead Time

Many processes involving transportation of materials or energy (pipes, conveyor belts etc.) have a time response
similar to that shown in previous figure. This includes a start-up time Ta made up of the actual dead time and the
time lag of the self-regulating process. In terms of controllability of the process it is extremely important that Tt
remains small relative to Tg or in other words that the relationship Tt/Tg ≤ 1 is maintained.

MV

PV

D MV

Tg

Tu

D PV

Ks =
D PV

D MV

The meaning of the parameters
is as follows:
KS transfer coefficient
Tu time lag
Tg settling time

t

t

Monitor and Control Instructions

SM Version 1.4 146 I4 Series

Figure 11-2 Step Response of a Self-Regulating Process with Dead Time (Tt-PT Process)

Since the controller does not receive any signal change from the transmitter during the dead time, its
interventions are obviously delayed and the control quality is therefore reduced. When using a standard
controller, such effects can be partly eliminated by choosing a new location for the measuring sensor.

Process with Integral Action

Here, the slope of the ramp of the process variable (PV) after changing the manipulated variable by a fixed
amount is inversely proportional to the value of the integration time constant (reset time) TI.

Figure 11-3 Step Response of a Non Self-Regulating Process (I Process)

Processes with an I component are, for example liquid level processes in which the level can be raised or
lowered at different rates depending on the opening of the final control element. Important processes involving
the I action are also the commonly used motor drives with which the rate of change of a traversing movement is
directly proportional to the speed of the drive.

If no disturbance variables occur before the I element of a process with integral action (which is usually the case),
a controller without I action should be used. The effects of a disturbance variable at the process input can usually
be eliminated by feedforward control without using an I action in the controller.

MV

PV

D MV

Tg

Ta

D PV

t

t

Ta Tu

The meaning of the parameter
is as follows:

Tt dead time

Tu time lag

Ta start up time (= Tt +Tu)

Tg settling time

D PV

D MV

MV

D MV

1

II t

t

Steady-state condition

The meaning of the
parameters is as follows:

TI reset time

Monitor and Control Instructions

SM Version 1.4 147 I4 Series

1.2 Feedforward Control

Disturbance variables affecting the process must be compensated by the controller. Constant disturbance
variables are compensated by controllers with an I action. The control quality is not affected.

Dynamic disturbance variables, on the other hand, have a much greater influence on the quality of the control.
Depending on the point at which the disturbance affects the control loop and the time constants of sections of the
loop after the disturbance, error signals of differing size and duration occur that can only be eliminated by the I
action in the controller.

This effect can be avoided in situations where the disturbance variable ”measuring” can be measured. By feeding
the measured disturbance variable forward to the output of the controller, the disturbance variable can be
compensated and the controller reacts much faster to the disturbance variable.

Figure 11-4 Compensating a Disturbance Affecting Process Input (Signal Names of the Standard PID Control)

1.3 Multi-Loop Controls

1.3.1 Processes with Inter-dependent Process Variables

The Standard Controller product contains prepared examples with which you can implement multi-loop controls
quickly and easily. Using such control structures always has advantages when dealing with processes that have
interdependent process variables.

The next sections describe the design of these controller structures and how they can be used.

Multi-loop Ratio Controls

Whenever the relationship between two or more process variables in a process is more important than keeping
its absolute values constant, ratio control is necessary.

Disturbance variable

Measurement

Rest of loop

DISV

MV

Controller

SP

PV

Programmable Logic Controller Process/plant

PT

Monitor and Control Instructions

SM Version 1.4 148 I4 Series

Figure 11-5 Ratio Control with Two Loops

Generally, the process variables that must be maintained in a preset ratio involve flow rates or volumes as found
in combustion processes. In above figure, the amount of fuel in control loop 2 is controlled in a ratio selected with
FAC to the amount of air set at SP1.

Blending Control

In a blending process, both the total amount of materials to be mixed and the ratio of the components making up
the total product must be kept constant.

Based on the principle of ratio control, these requirements result in a control structure in which the amount of
each component of the mixture must be controlled. The setpoints of the components are influenced by the fixed
proportion or ratio factors (FAC) and by the manipulated variable of the controller responsible for the total amount
(Following figure).

PID
Controller

1

PID
Controller

2

SP 1

PV 1

SP 2

PV 2

FAC

MV

MV

Process 1
(e.g. amount of air)

Process 2
(e.g. amount of fuel)

Programmable Logic Controller Process/plant

-

-

x

Monitor and Control Instructions

SM Version 1.4 149 I4 Series

Figure 11-6 Blending control for three components

The controller structure for the blending control contains a controller with a continuous output for controlling the
total amount ALL and three controllers for the secondary control loops of the individual components 1 to 3, that
make up the total amount according to the factors FAC1 to FAC3 (addition).

Cascade Control

If a process includes not only the actual process variable to be controlled but also a secondary process variable
that can be controlled separately, it is usually possible to obtain better control results than with a single loop
control.

The secondary process variable PV2 is controlled in a secondary control loop. This means that disturbances from
this part of the system are compensated before they can affect the quality of the primary process variable PV1.
Due to the structure, inner disturbance variables are compensated more quickly since they do not occur in the
entire control loop. The setting of the primary controller can then be made more sensitive allowing faster and
more precise control with the fixed setpoint SP.

MV
SPGM

PVGM

Controller
All

SP1

FAC1 PV1

Controller
1

MV 1 Process
1 x -

SP2

FAC2 PV2

Controller
2

MV 2 Process
2 x -

SP3

FAC3 PV3

Controller
3

MV 3 Process
3 x -

-

+

+

Programmable Logic Controller Process/plant

Monitor and Control Instructions

SM Version 1.4 150 I4 Series

Figure 11-7 Two-Loop Cascade Control System

The controller structure for cascade control contains a controller with a continuous output for controlling the
reference input (setpoint) of the secondary loop and a step controller to control the secondary process variable
PV2 (secondary controller).

1.4 Structure and Mode of Operation of the PID Control

The controllers that can be implemented with the Standard PID Control are always digital sampling controllers
(DDC=direct digital control). Sampling controllers are time-controlled, in other words they are always processed
at equidistant intervals (the sampling time or CYCLE). The sampling time or frequency at which the controller is
processed can be selected.

The following figure illustrates a simple control loop with the standard controller. This diagram shows you the
names of the most important variables and the abbreviations of the parameters as used in this manual.

Figure 11-8 Sampling Controller of the Standard PID Control in the Closed Loop

The control functions implemented in the function block PID_STD is pure software controllers. The input and
output values of the controllers are processed using digital algorithms on a CPU.

Controller
1

Controller
2

Process
Part 1

Process
Part 2

SP1

PV1

-

MV 1

PV2

-

Primary controller Secondary loop (follow-on control)

MV 2

Programmable Logic Controller Process/plant

Setpoint

Process Actuator

Process
variable
PV SP

Disturbance
variable

Manipulated
Variable
MV

Controller
algorithm

Manipulated
value

algorithm

Comparator Error signal (ER) Manual value (MAN)

= Interfaces to process

Function block: PID_STD
sampling time: CYCLE

Monitor and Control Instructions

SM Version 1.4 151 I4 Series

Since the processing of the controller blocks in the processor of the CPU is serial, input values can only be
acquired at discrete times and the output values can only be output at defined times. This is the main
characteristic of sampling control.

1.4.1 Control Algorithm and Conventional Control

The control algorithm on the processor simulates the controller under real-time conditions. Between the sampling
instants, the controller does not react to changes in the process variable PV and the manipulated variable MV
remains unchanged.

Assuming, however, that the sampling intervals are short enough so that the series of sampling values
realistically approximates the continuous changes in the measured variable, a digital controller can be considered
as quasi continuous. With the Standard PID Control, the usual methods for determining the structure and setting
characteristic values can be used just as with continuous controllers.

This requirement for creating and scaling controllers with the Standard PID Control package is met when the
sampling time (CYCLE) is less than 20% of the time constant of the entire loop.

If this condition is met, the functions of the Standard PID Control can be described in the same way as those of
conventional controllers. The same range of functions and the same possibilities for monitoring control loop
variables and for tuning the controller are available.

1.4.2 The Functions of the “Standard PID Control”

The following diagrams illustrate the preconfigured controller structures of the Standard PID Control as block
diagrams. The following figure represents the continuous controller with the signal processing branches for the
process variable and setpoint, the controller and the manipulated variable branch. You can see which functions
must be implemented after the signal conditioning at the input and which are not required.

The range of functions of the ”Standard PID Control” is rigid, but can be extended by a user-defined function (FC)
in each of the signal processing branches.

Monitor and Control Instructions

SM Version 1.4 152 I4 Series

Figure 11-9 equence of Functions of the Standard PID Control (continuous controller)

Setpoint input Process variable
from I/Os

Internal process
variable

External setpoint

Process variable
normalization

Time lag

Square root
extraction

User function
(FC)

Setpoint
generator

Setpoint
normalization

Ramp soak

User function
(FC)

Rate of change
limits

Setpoint limits Process variable
monitoring

Process variable rate
of change monitoring

Error signal
monitoring

Dead band

PID Controller Manual value
generator

User function
(FC)

Rate of change
limits

Manipulated
value limits

Manipulated value
normalization Pulse generator Format

conversion

Manual input

Peripheral output Manipulated value output [%] Pulse outputs

PV SP

ER

-

Monitor and Control Instructions

SM Version 1.4 153 I4 Series

1.5 Signal Processing in the Setpoint Branch

• Fixed setting of the setpoint value (SP_GEN)
With fixed setpoint controllers, the setpoint is selected using a switch at the setpoint generator SP_GEN
and is then fixed.

• Setpoint setting according to a time-controlled program (RMP_GEN)
When controlling processes with different setpoints set according to a time-controlled program, the ramp
soak function generates the required curve for the reference input and influences the process so that the
process variable changes according to a defined profile.

• Change limitation for the reference input(ROC_GEN)
The conversion of setpoint step changes to a ramp-shaped increase or decrease in the reference input
prevents large input changes to the process. The ROC_GEN function limits the setpoint rate of change
separately for the up rate and down rate and for positive and negative values in the reference input.

• Absolute value limitation for the reference input (LIMIT)
To prevent illegal process states occurring, the setpoint is limited by high and low limits (LIMIT).

• Delay of the process variable (LAG1_GEN)
To reduce the effects of noise on process signals, a first order time lag is used in the process variable
branch. This function dampens the analog process variable more or less depending on the time
constant TMLAG. Disturbance signals are therefore effectively suppressed. Overall, however, the time
constant of the total control loop is increased, in other words, the control action becomes slower.

• Extracting the root of the process variable (SQRT_NORM)
When the relationship of the measured signal to the physical value is quadratic (flow measurement
using a differential flow meter) the process variable must be linearized by extracting the root (square
root algorithm). Only a linear value can be compared to the linear setpoint for the flow and processed in
the control algorithm. For this reason, the SQRT_NORM function element can be included in the
process value branch as an option.

• Monitoring the Process Variable Rate of Change (CHG_ALM)
If the rate of change of the process variable is extremely high or too high, this points to a dangerous
process state to which the programmable logic controller may have to react. For this reason, the
CHG_ALM function generates alarm signals if selectable rates of change (positive or negative) are
detected in the process variable. The alarm signals can then be further processed to suit the particular
situation.

• Monitoring the Absolute Value of the Process Variable and Error Signal (LIM_ALM)
The limit values are set for the process variable and the error signal are monitored by the LIM_ALM
function.

• Superimposing by Signal Noise (DEADBAND)
To filter out noise on the channels of the process variable or the external reference input, the error
signal passes through a selectable dead band component. Depending on the amplitude of the noise, the
dead band width can
be selected for the signal transmission. Falsification of the transmitted signal must, however be
accepted as a side effect of the selected dead band.

1.6 Signal Processing in the PID Controller

• Fixed Setting of the Manual Value (MAN_GEN)
In the manual mode (open loop), the manipulated value is selected at the manual value generator
MAN_GEN using a switch and is fixed.

• Change Limitation of the Manipulated Variable (ROC_GEN)
Converting extremely fast step changes in the manipulated variable into a ramp-shaped rise or fall in the
manipulated variable prevents sudden changes in the input to the process. The function (ROC_GEN)
limits the manipulated value rate of change both up and down.

• Absolute value limitation for the Manipulated Variable (LIMIT)
To avoid illegal process states or to restrict the movement of an actuator, the upper and lower limits of
the range of the manipulated variable are set with LIMIT.

• Forming the Binary Actuating Signal (THREE_STP_GEN)
Depending on the sign of the error signal, the three-step switch THREE_ STP_GEN generates a
positive or negative output pulse via the pulse shaping stage.

Monitor and Control Instructions

SM Version 1.4 154 I4 Series

2. Configuring and Starting the Standard PID Control

2.1 Defining the Control Task

Before you implement a control loop using the Standard PID Control package, you must first clarify the technical
aspects of the process you want to automate, the programmable logic controller you will be using and the
operating and monitoring environment. To specify the task in detail, you therefore require the following
information:

1- You need to know the process you want to control, in other words the characteristic data of the process
(gain, equivalent time constant, disturbance variables etc.).

2- You must choose the CPU on which you want to install the Standard PID Control.

3- You must define the signal processing and monitoring functions along with the basic functions of the
controller.

Since the Standard PID Control package creates software controllers based on the standard function blocks (for
example PID_STD) from the range of Intelart Studio control blocks, you should be familiar with handling those
blocks and with the structure of I4PLCs user programs.

Although the functions of the implemented controller are defined solely by assigning parameters, the connection
of the controller block to the process I/Os and its integration in the call system of the CPU requires knowledge
that cannot be dealt with within the scope of this manual.

You require the following information:

1- Working with I4PLCs

2- The basics of programming with Intelart Studio

3- Data about the programmable logic controller you are using

There are almost no restrictions in terms of the type and complexity of the processes that can be controlled with
the Standard PID Control. Providing the system is a single input-single output system without a derivative transfer
action and without all-pass components, all process types whether self-regulating processes or not, in other
words without or with I components can be controlled (following figure).

Monitor and Control Instructions

SM Version 1.4 155 I4 Series

Figure 11-10 Types of Process that can be Controlled with Standard PID Control

The process variable (PV) to be processed by the Standard PID Control is always an analog physical variable
(voltage, current, resistance etc.) that is digitized by an expansion analog input module and converted to the
uniform Real I/O signal.
The values of these signals are saved in memory cells or areas of the CPU user memory. These areas can be
addressed using absolute addresses or using symbolic addresses after making the appropriate entries in the
symbol table of the CPU.

2.2 Type of Actuator

To select a suitable configuration for the Standard PID Control, the type of actuator used to influence the process
variable is important. The type of signal required by the actuator determines the way in which signals are output
in the manipulated variable branch (continuous or discontinuous).

In the great majority of cases, some form of valve will be used to adjust material or energy flow. Different
actuating signals are required depending on the drives used to adjust these valves.

1- Proportional actuators with a continuous actuating signal.
The opening of an orifice, the angle of rotation or a position is adopted proportional to the value of the
manipulated variable, in other words within the actuating range, the manipulated variable operates in an
analog manner on the process. The actuators in this group include pneumatic diaphragm actuators and
electro-mechanical actuators with position feedback signals with which a positioning control loop can be
created.

2- Proportional actuators with a pulse-width modulated signal.
With these actuators, a pulse signal is output with a length proportional to the value of the manipulated
variable at the sampling time intervals. This means that the actuator (for example a heating resistor or
heat exchanger) is switched on for a length of time depending on the manipulated variable. The
actuating signal can be either monopolar representing the states on or off or bipolar, representing for
example the values open/close, forwards/backwards, accelerate/decelerate.

3- Actuators with an integral action and three-step actuating signal.
Actuators are often driven by motors in which the duration of the “on” time is proportional to the travel of
the valve plug. Despite different designs, these actuators all share the same characteristic in that they
correspond to an integral action at the input to the process. The Standard PID Control with a step output

P-TE process
(TE = T1 + T1 + ..)

I-TE process
(TE = T1 + ..)

P-T1-TE process
(TE = T2+ T2 + ..)

P-TS-TE process
(TE = T1 + ..)

MV

MV

MV

MV

PV

PV

PV

PV

P-T1 P-T1 P-T1

P-T1 TI

P-T1 P-T2 P-T2

P-T1 P-Ts

Monitor and Control Instructions

SM Version 1.4 156 I4 Series

provides the most economical solution to designing control loops including actuators with an integral
action.

TIP

The manipulated variables are represented as digital numerical values in the floating point or peripheral (I/O)
format or as binary signal states. Depending on the actuator being used, expansion modules must always be
connected to the output to convert the signals to the required type and to provide the required actuating
energy.

2.3 Generating the Control Project Configuration

Now that you have worked through the required control and monitoring, this section now shows you the step-by-
step implementation of these functions. We recommend that you create your configuration following the steps
outlined below (checklist):

1- Select the controller blocks or block configuration required for your controller structure. Select and copy
a configuration example closest to the configuration you want to implement.

2- Configure the required controller by including or omitting preconfigured functions or by including your
own.

3- Select the sampling time and calls of the control loop:

•
Specify the startup response with Startup OB

• Decide on the sampling time and priority class, if necessary, change the call interval of the
periodic interrupt OB

• Configure the loop scheduler to suit the number of loops on the CPU

4- Assign parameters and use the conversion functions for the measuring range and zero point adaptation
of the input/output signals:

• Normalization of the external setpoint

• Normalization of the external process variable

• Manipulated value denormalization

5- Configure the setpoint branch:

• Setpoint generator

• Ramp soak

• Limits of the setpoint rate of change

• Limits of the absolute values of the setpoint

6- Configure the process variable branch:

• Process variable time lag

• Square root extraction

• Monitor the absolute values of the process variable

• Monitoring the rate of change of the process variable

7- Configure error signal generation:

• Dead band of the error signal

• Monitoring the error signal for absolute values

8- Configure the manipulated value branch for continuous controllers:

• Manual value generator

• Limits of the rate of change of the manipulated value

• Limits of the absolute values of the manipulated value

9- Configure controller:

• PID controller structure and PID parameters

Monitor and Control Instructions

SM Version 1.4 157 I4 Series

• Operating point for P and PD controllers

• Feedforward control

10- If necessary, include extra functions in the form of a user FC in the setpoint, process variable and/or
manipulated value branch.

11- Interconnect the block inputs and outputs of the configured standard controller with the process I/Os:

• Program the connections of the inputs/outputs with the absolute or symbolic I/O addresses in
the user memory of the CPU.

2.4 The Sampling Time CYCLE

2.4.1 The Sampling Time: CYCLE

The sampling time is the basic characteristic for the dynamic response of the Standard PID Control. This decides
whether or not the controller reacts quickly enough to process changes and whether the controller can maintain
control in all circumstances. The sampling time also determines the limits for the time-related parameters of the
Standard PID Control.

Selecting the sampling time is a compromise between several, often contradictory requirements. Here, it is only
possible to specify a general guideline.

• The time required for the CPU to process the control program, in other words to run the
function block, represents the lowest limit of the sampling time.

• The tolerable upper limit for the sampling time is generally specified by the process dynamics.
The process dynamics is, in turn, characterized by the type and the characteristics of the
process.

2.4.2 Equivalent System Time Constant

The most important influence on the dynamics of the control loop is the equivalent system time constant (TE) that
can be determined after entering a step change MV by recording the unit step response at the system input.
The system value TE represents a useful approximation of the effective time lag caused by several P-T1, P-TS
and Tt elements in the loop. If, for example the same PT 1-elements are connected in series, it is the sum of the
single time constants.

Figure 11-11 Determining the Equivalent System Time Constant TE

2.4.3 Sampling Time Estimate

If a minimum speed is required for the control, you can specify a maximum sampling time CYCLEmax.

With P-TE processes in which the first delay element is predominant and T1 ≥ 0.5 TE make sure that:

CYCLEmax ≤ 0.1 * TE

For all other P-TE-processes:

CYCLEmax ≤ 0.2 * TE is adequate

PV

Tg

Ta

TE

t

The meaning of the parameters is
as follows:

TE Equivalent system time constant

Ta Start-up time (Tt + Tu)

Tg Settling time

Monitor and Control Instructions

SM Version 1.4 158 I4 Series

2.4.4 Rule of Thumb for Selecting the Sampling time

Experience has shown that a sampling time of approximately 1/10 of the time constant TEG determining the step
response of the closed loop produces results comparable with the conventional analog controller.
The total time constant of the closed loops is obtained in a way similar to that shown in Figure 11-11, by entering
a setpoint step change and evaluating the settling of the process variable.

2.5 How the Standard PID Control is Called

Depending on the sampling time of the specific controller, the controller block must be called more or less often
but always at the same time intervals. The operating system of the I4PLC calls the periodic interrupt organization
block at the specified intervals.

If you require several controllers or controllers with large sampling times, you should use the loop scheduler
mechanism (LP_SCHED).

2.6 Range of Values and Signal Adaptation (Normalization)

2.6.1 Internal Numerical Representation

When the algorithms in the function blocks of the Standard PID Control are processed, the processor works with
numbers in the floating point format (REAL).
The floating point numbers have the single format complying with ANSI/IEEE standard 754-1985:

Format: DD (32 bits)

Range of values: – 3.37 * 1038 ... – 8.43 * 10-37 and
8.43 * 10-37 ... 3.37 * 1038

This range is the total range of values for parameters in the REAL format. To avoid limits being exceeded during
processing, the input signal SP which is an analog physical value is defined as a technical range of values:

Techn. Range of values: –105 ... +105

2.6.2 Signal Adaptation

The normalization function at the input for the external setpoint allows any characteristic curve of transmitters or
sensors to be adapted to the physical range of values of the Standard PID Control.

3. Signal Processing in the Setpoint/Process Variable Channels and PID
Controller Functions

3.1 Average Value Generator (AVG_GEN)

Table 11-1 AVG_GEN instruction

LAD/ FBD Description

Moving average by an external buffer and selectable averaging samples
count.

Supported Properties: None

CYCLE =
1

10

TEG

Monitor and Control Instructions

SM Version 1.4 159 I4 Series

Table 11-2 Data types for the parameters

Parameter Data type Description

RUN Bool Run mode.

• False = Fills the buffer with INV value and outs the INV on OUT

• True = Running moving average

INV Real Input variable

MN_N Int Number of mean (average) elements

BUF Real[*] Ring buffer

OUT Real Average output

3.2 Rate of Change Alarm Generator (CHG_ALM)

Table 11-3 CHG_ALM instruction

LAD/ FBD Description

The CHG_ALM function monitors limits for the rate of change of any
process variable.

The numerical values for the rate of change limits are set at the input
parameters for “up rate” and “down rate” in the positive and negative
ranges of the process variable. The rate of change is an up or down rate
as a percentage per second.

If the rate of change of the process variable exceeds these limits, the
output signal bits QURLMP to QDRLMN are set.

Supported Properties: None

Application

If the rate of change in a process variable is too fast (for example motor speed, pressure, level, temperature etc.),
illegal or dangerous situations can occur in the process or plant. Here, the CHG_ALM function is used to make
sure that the process variable does not exceed or fall below a permitted range of change or slope. Limit violations
are detected and signaled to allow a suitable reaction.

Monitor and Control Instructions

SM Version 1.4 160 I4 Series

Figure 11-12 Monitoring the Rate of Change (Slope) of a Process Variable INV(t)

Table 11-4 Data types for the parameters

Parameter Data type Description

RUN Bool Run mode

INV Real Input variable

URLM_P Real INV rise limit in the positive range. INV > 0 and |INV| rising

DRLM_P Real INV fall limit in the positive range. INV > 0 and |INV| falling

URLM_N Real INV rise limit in the neg. range. INV < 0 and |INV| rising

DRLM_N Real INV fall limit in the neg. range. INV < 0 and |INV| falling

MN_N Int Number of mean (average) elements. 0 < MN_N <= 8

OUT Real Current change value

QURLMP Bool Rise limit in the positive range alarm

QDRLMP Bool Fall limit in the positive range alarm

QURLMN Bool Rise limit in the negative range alarm

QDRLMN Bool Fall limit in the negative range alarm

3.3 Cycle Time Calculator (CYC_TM)

Table 11-5 CYC_TM instruction

LAD/ FBD Description

Calculates the elapsed time of its last execution.

Supported Properties: None

INV

INV(t)

t

URLM_P

DRLM_P

DRLM_N URLM_N

URLM_N

QURLMP

QDRLMP

QURLMN

QDRLMN

Monitor and Control Instructions

SM Version 1.4 161 I4 Series

Table 11-6 Data types for the parameters

Parameter Data type Description

RUN Bool Run mode

OUT Time Calculated cycle time

3.4 Filtering Signal Function (DEADBAND)

Table 11-7 DEADBAND instruction

LAD/ FBD Description

The DEADBAND function is a selectable band in which small fluctuations
in the input variable around a specified zero point are suppressed.
Outside this band, the error signal OUT rises or falls in proportion to the
input value. You can specify the width of the DEADBAND using the
parameter DEADB_W. The DEADBAND width can only have positive
values.

If the input variable is within the DEADBAND, the value 0 is output (error
signal = 0). The output only rises or falls by the same values as the input
variable inv only when the input variable leaves this DEADBAND. This
also falsifies the transferred signal when it is outside the DEADBAND.
This is, however, an acceptable compromise to avoid step changes at
the limits of the DEADBAND. The amount to which the signal is falsified
corresponds to the value DEADB_W and can therefore be checked
easily.

Supported Properties: None

Application

If the process variable or the setpoint is affected by higher frequency noise and the controller is optimally set, the
noise will also affect the controller output. This can, for example, lead to large fluctuations in the manipulated
value at high control again when the D action is activated. This function reduces noise in the error signal of the
controller in the settled state and thus reduces unwanted oscillation of the controller output.

The DEADBAND operates according to the following functions:

Modified PV = SP - PV + DEADB_W where SP - PV < –DEADB_W

Modified PV = 0 where –DEADB_W ≤ SP - PV ≤ +DEADB_W

Modified PV = SP - PV + DEADB_W where SP - PV > +DEADB_W

Figure 11-13 Filtering Noise Affecting the Error Signal (SP – PV) using a DEADBAND

Table 11-8 Data types for the parameters

Parameter Data type Description

SP Real Setpoint

PV Real Process variable

DEADB_W Real Dead band width. DEADB_W >=0

Modified PV (OUT)

SP - PV
PV

(OUT)

DEADB_W

Monitor and Control Instructions

SM Version 1.4 162 I4 Series

FALS_DB Bool Falsify error outside dead band. False = Disabled, True = Enabled

OUT Real Modified PV

QDEADB Bool Control error is within dead band

3.5 Unsigned Int to Signed Int Encoder (ENCODER)

Table 11-9 ENCODER instruction

LAD/ FBD Description

Converts a 16-bit unsigned counter value to 32-bit unsigned value.

Supported Properties: None

Table 11-10 Data types for the parameters

Parameter Data type Description

INV UDInt Input value from 16-bit encoder

OUT DInt 32-bit encoder value

3.6 First In First Out (FIFO)

Table 11-11 FIFO instruction

LAD/ FBD Description

The full form of FIFO is First In, First Out. FIFO is a method of
organizing, handling, and manipulating the data structure of elements in
a computing system. It's a type of data handling which prioritizes the
processes that come first- meaning, it will first remove or append those
elements that came first.

Supported Properties: None

Table 11-12 Data types for the parameters

Parameter Data type Description

N Int Maximum depth after reset

QUEUE Bool Basic queue operations

PEEK Bool Basic queue operations

R1 Bool Over-riding reset

IN Variant Input to be queued

Monitor and Control Instructions

SM Version 1.4 163 I4 Series

OUT Variant First element data

BUFFER Variant[*] External array

EMPTY Bool Stack empty

OFLO Bool Stack overflow

3.7 Asymmetric Hysteresis Generator (HYST_GEN)

Table 11-13 HYST_GEN instruction

LAD/ FBD Description

The Asym hysteresis function block provides an asymmetric hysteresis
boolean output driven by the difference of two floating point (REAL)
inputs XIN1 and XIN2.

Supported Properties: None

Table 11-14 Data types for the parameters

Parameter Data type Description

XIN1 Real Input 1

XIN2 Real Input 2

EPS_H Real High epsilon

EPS_L Real Low epsilon

Q Bool XIN1 > XIN2 + EPS_H = 1, XIN1 – EPS_L < XIN2 = 1

3.8 Damping the Process Variable (LAG1_GEN)

Table 11-15 LAG1_GEN instruction

LAD/ FBD Description

By incorporating a time delay, higher frequency fluctuations in the
process variable signal can be damped so that they are excluded from
the processing in the control algorithm in particular to avoid affecting the
derivative action. The amount of signal damping is determined by the
time constant TMLAG. The damping effect is achieved by a first order
time lag algorithm.

Supported Properties: None

Monitor and Control Instructions

SM Version 1.4 164 I4 Series

Application

The LAG1_GEN function is used as a delay element for the process variable. This can be used to suppress
disturbances.

By incorporating a time delay, higher frequency fluctuations in the process variable signal can be damped so that
they are excluded from the processing in the control algorithm in particular to avoid affecting the derivative action.
The amount of signal damping is determined by the time constant TMLAG.
The damping effect is achieved by a first order time lag algorithm.
The transfer function in the Laplace transform is as follows:

The step response in the time domain is as follows:

outv(t) = MP4(0) (1 – e-t/PV_TMLAG)

Legend:

MP4(0) the size of the process variable jump at the input

outv(t) the output value

TMLAG the delay time constant

t time

Figure 11-14 Time lag smoothing diagram

Conditions for Parameter Assignment

If TMLAG ≤0.5 * CYCLE, there is no lag in effect.

A sampling time (CYCLE) of less than a fifth of the time lag is necessary to achieve a time lag approaching the
analog response.

Table 11-16 Data types for the parameters

Parameter Data type Description

INV Real Input variable

TMLAG Time Input variable time lag

DF_OUT Real Default output variable

DF_OUT_ON Bool Output default value on

RST_ON Bool Restart

CYCLE Time Sample time

OUT Real Output variable

MP4(s) (1 + TMLAG * s)

________ = _______________ where s = Laplace variable
outv(s) 1

Outv
MP4

MP4(0)

outv(t)

TMLAG 5 * TMLAG

< 1% Deviation from
steady-state value

Monitor and Control Instructions

SM Version 1.4 165 I4 Series

3.9 Monitoring a Process Variable Limits (LIM_ALM)

Table 11-17 LIM_ALM instruction

LAD/ FBD Description

The LIM_ALM function monitors four selectable limits in two tolerance
bands for a process variable INV(t). If the limits are reached or
exceeded, the function signals a warning at the first limit and an alarm at
the second limit.

The numerical values of the limits are set in the input parameters for
“Warning” and
“Alarm”. If the process variable (INV) exceeds or falls below these limits,
the corresponding output bits QH_ALM, QH_WRN, QL_WRN and
QL_ALM are set.

To prevent the signal bits “flickering” due to slight changes in the input
value or due to rounding errors, a hysteresis HYS is set. The hysteresis
must pass the process variable before the messages are reset.

Supported Properties: None

Application

Illegal or dangerous states can occur in a system if process values (for example motor speed, pressure, level,
temperature etc.) exceed or fall below critical values. In such situations, the LIM_ALM function is used to monitor
the permitted operating range. Limit violations are detected and signaled to allow a suitable reaction.

Figure 11-15 A Process Variable INV – Monitoring the Limit Values

Table 11-18 Data types for the parameters

Parameter Data type Description

INV Real Input variable

H_ALM Real Upper INV limit ’alarm’

H_WRN Real Upper INV limit ’warning’

INV

H_ALM

H_WRN

L_WRN

L_ALM

QH_ALM

QH_WRN

QL_WRN

QL_ALM

INV(t)

t

HYS

Tolerance band

Tolerance band

Monitor and Control Instructions

SM Version 1.4 166 I4 Series

L_ALM Real Lower INV limit ’alarm’

L_WRN Real Lower INV limit ’warning’

HYS Real INV hysteresis

QH_ALM Bool High limit alarm

QH_WRN Bool High limit warning

QL_WRN Bool Low limit warning

QL_ALM Bool Low limit alarm

3.10 Loop Scheduler (LP_SCHED)

Table 11-19 LP_SCHED instruction

LAD/ FBD Description

The ”LP_SCHED” function reads the parameters specified by you
calculates the variables required to schedule the loops.

You should call the ”LP_SCHED” FC in a periodic interrupt OB.
Afterwards you must program a conditional call for all the corresponding
control loops in the same OB. The condition for calling the individual
control loops is determined by the ”SCHED” Bool array. During operation
you can disable the call of individual control loops manually and
furthermore reset individual control loops.

Supported Properties: None

Table 11-20 Data types for the parameters

Parameter Data type Description

RUN Bool Input value from 16-bit encoder

TM_B Time Time base

SCHED Bool[*] Schedule bool array

OUT Int Current schedule index

Application

The loop scheduler LP_SCHED is used when the number of periodic-interrupts of a CPU is not enough to realize
the desired (various) sampling times. It allows any size of control loops to be called with sampling times which
amount to time base (TM_B) of the OB cycles.

Call of the ”LP_SCHED” FB in your Program

The ”LP_SCHED” FB must be called before all control loop FBs.

Observe the following points when assigning values to the input parameter.

• RUN: When True, the scheduler will be run. When False, the scheduler is disabled and all SCHED bits
are in reset mode

• TM_B: At this point enter the interval time of the schedule to be executed.

• SCHED: A Bool array in size of your control loops which you must assign to the FB in order to update its
status by the scheduler

• OUT: Current schedule index in run mode. -1 when scheduler is disabled

When you call the control loop FBs you have to interconnect their input parameters EN and CYCLE with the
variables SCHED[x] and TM_B of the FB. SCHED [x] contains the trigger Boolean value only for one cycle
and is written by the ”LP_SCHED” FB at every run.

The following section gives an example for calling the ”LP_SCHED” FB and for the conditional call of three
functions.

TIP

We recommend you to run LP_SCHED in a periodic interrupt OB instead of a cyclic program OB. When you
run the LP_SCHED in a periodic interrupt you must set the interval of the OB to be a chunk of the TM_B

Monitor and Control Instructions

SM Version 1.4 167 I4 Series

parameter of the LP_SCHED FB. For example, if you want to execute 4 functions in every 200ms intervals in a
periodic interrupt, then you must set the Interval property of the OB to a rounded number such as 200ms/4 =
50ms or another less coefficient number.
In cyclic program OB there is no periodic interval and no guarantee to run schedules on a precise time base.

NOTICE

If you set a wrong TM_B value for the LP_SCHED FB, an arranged executions order may be occur.

Figure 11-16 Example of LP_SCHED for 3 scheduled functions

Monitor and Control Instructions

SM Version 1.4 168 I4 Series

3.11 Manual Value Generator (MAN_GEN)

Table 11-21 ENCODER instruction

LAD/ FBD Description

The MAN_GEN function generates a value that can be set or modified
using switches. The output variable OUT can be increased or decreased
step-by-step via the binary inputs OUT_UP and OUT_DN.

The range of the setpoint is restricted by the high/low limits H_LM/ L_LM
in the value branch. The numerical values of the limits (as percentages)
are set using the corresponding input parameters. The signal outputs
QH_LM and QL_LM indicate when these limits are exceeded.

The rate of change of the output variable depends on the length of time
the switches OUT_UP or OUT_DN are activated and on the selected
limits as shown below:

During the first 3 seconds after setting OUT_UP or OUT_DN:

afterwards:

Supported Properties: None

Table 11-22 Data types for the parameters

Parameter Data type Description

DF_OUT Real Default output variable

H_LM Real Input variable high limit

L_LM Real Input variable low limit

OUT_UP Bool Output variable up

OUT_DN Bool Output variable down

DF_OUT_ON Bool Output default value on

RST_ON Bool Restart

CYCLE Time Sample time

OUT Real Output variable

QH_LM Bool Output variable high limit

QL_LM Bool Output variable low limit

 dt 100 s

________ = _____________ d outv H_LM – L_LM

 dt 10 s

________ = _____________ d outv H_LM – L_LM

Monitor and Control Instructions

SM Version 1.4 169 I4 Series

Application

Using a higher/lower switch, you can adjust the internal setpoint.

Figure 11-17 Changing OUT as a function of the switches OUT_UP and OUT_DN

3.12 Normalize (NORM)

Table 11-23 NORM instruction

LAD/ FBD Description

Normalizes the parameter INV inside the value range specified by the
IN_L and IN_H parameters:

OUT = (INV – IN_L) / (IN_H – IN_L), where (0.0 <= OUT <= 1.0)

Supported Properties: None

Table 11-24 Data types for the parameters

Parameter Data type Description

INV AnyNum Input variable

IN_L AnyNum Input low limit

IN_H AnyNum Input high limit

OUT AnyNum Normalized output

OUT
H_LM

L_LM

3s 3s 3s

3s

OUT_UP

OUT_DN

t

t

t

Monitor and Control Instructions

SM Version 1.4 170 I4 Series

3.13 Standard PID (PID_STD)

Table 11-25 PID_STD instruction

LAD/ FBD Description

This FB implements a complete PID controller with continuous
manipulated variable output with the option of adjusting the manipulated
value manually.

Subfunctions can be enabled of disabled.

Using the FB, you are in a position to control technical processes and
systems with continuous input and output variables on I4PLC
programmable logic controllers. The controller can be used as a fixed
setpoint controller either individually or in multi-loop control systems as a
cascade, blending or ratio controller.

Supported Properties: None

Table 11-26 Data types for the parameters

Parameter Data type Description

MAN_ON Bool Manual value on (variable MAN_MV)

MAN_MV Real Manual MV variable

SP Real Setpoint

PV Real Process variable

KP Real Proportional gain

TI Real Reset time

TD Real Derivative time

I_SEL Bool Integral action on

D_SEL Bool Derivative action on

CP0 Real Control parameter 0

CP1 Real Control parameter 1

CYCLE Time Sample time of controller

RST_ON Bool Initialize on

MV Real Manipulated value

C_DEV Real Control deviation (%)

Static Members

MV_LO Real Low limit of mv

MV_HI Real High limit of mv

DIST_BND Real Disturbance rejection band (%)

STD_BND Real Steady state band (%)

Monitor and Control Instructions

SM Version 1.4 171 I4 Series

DER_N Real Derivative gain mode. 8<= x <= 20 : Damper gain for D on PV. 8 > x :
D with time lag

DS_CORR Real Dev supp Correction offset (%)

DS_PULUP_DEV Real Dev supp Pull up deviation threshold

DS_PULDN_DEV Real Dev supp Pull down deviation threshold

DS_PULUP_TRG Time Dev supp Pull up time trigger

DS_PULDN_TRG Time Dev supp Pull down time trigger

PRP_RT Real Proportional rate

INT_RT Real Integral rate

DER_RT Real Derivative rate

ERROR Real Control error

P_SEL Bool Proportional action on

C_DIR Bool Control direction. 0=Inverse, 1=Direct

RMP_EQ Bool Ramp equivalence integration. 0=Disabled, 1=Enabled

SM_INIT Bool Smooth initialization. 0=Disabled, 1=Enabled

DS_PULUP Bool Deviation suppression Pull up on

DS_PULDN Bool Deviation suppression Pull down on

DS_PCT Bool Deviation suppression on percentage of error

QINT_ON Bool Integrator operation on

QDIST_REJ Bool Disturbance rejection activated

QDS_HI_OUT Bool Dev supp PV greater than upper band range

QDS_LO_OUT Bool Dev supp PV less than lower band range

QPB_OUT Bool Error is outside the proportional band

3.13.1 Block Diagram of the Standard Controller

The mode of operation is based on the PID control algorithm of the sampling controller with an analog output
signal, if necessary, supplemented by a pulse generator stage for generating pulse-duration modulated output
signals for two or three-step controllers with proportional actuators.

Figure 11-18 Block Diagram of the Controller with Continuous Actuating Signal

3.13.2 Complete Restart/Restart

The PID_STD function block has an initialization routine that is run through when the input parameter RST_ON =
True is set.

3.13.3 Integral action (INT)

When the controller starts up, the integrator is set to the initialization value MAN_MV (if SM_INIT= True) and the
integral action is output at the MV output. When it is called by a periodic interrupt, it starts at this value.

All other outputs are set to their default values.

3.13.4 Manual Mode and Changing Modes

In addition to the “automatic” mode with the output switched to the output of the PID algorithm (MV), the Standard
PID Control also has a manual mode in which the manipulated variable can be influenced manually.

Using the parameter MAN the manipulated variable can be adjusted externally either setting the value manually
or by the user program setting the value when MAN_ON = True. The input value MAN is limited to the
manipulated variables MV_HI upper) and MV_LO (lower).

SP

PV

ER

-

MV

Monitor and Control Instructions

SM Version 1.4 172 I4 Series

3.13.5 Automatic Mode

If MAN_ON = False is selected, the manipulated value of the PID algorithm is connected to the output. In manual
mode (MAN_ON = True) the integral components of the controller are disabled so that the controller begins with
a sensible manipulated variable when changing over to automatic mode only when SM_INIT = True.

3.13.6 Limiting the Absolute Value of the Manipulated

The operating range, in other words the range through which the actuator can move within the permitted range of
values, is determined by the range of the manipulated variable. Since the limits for permitted manipulated values
do not normally match the 0% or 100% limit of the manipulated value range, it is often necessary to further
restrict the range.

To avoid illegal statuses occurring in the process, the range for the manipulated variable has an upper and lower
limit in the manipulated variable branch MV_LO and MV_HI.

3.13.7 Control Algorithm and Controller Structure

Within the cycle of the configured sampling time, the manipulated variable of the continuous controller is
calculated from the error signal in the PID algorithm. The controller is designed as a parallel structure. The
proportional, integral and derivative actions can be deactivated individually.

Figure 11-19 Control Algorithm of the Standard PID Control (Parallel Structure)

3.13.8 Defining the Controller Structure

To define an effective controller structure, there are three switches available. The setting of this structure switch
is carried out in the configuration tool by selecting the P, I and D actions.

Table 11-27 Selecting the Controller Structure

Mode Switch P_SEL I_SEL D_SEL

P controller True False False

PI controller True True False

PD controller True False True

PID controller True True True

Reversing the Controller Functions

You can reverse the controller from

• Rising process variable PV(t) → falling manipulated variable MV(t) (Inverse mode)

to the

• Rising process variable PV(t) → rising manipulated variable MV(t) (Direct mode)

by setting a True value for C_DIR switch. C_DIR decides the direction of the control action of the continuous
controller.

3.13.9 P Controller

In a P controller, the I and D actions are disabled. (I_SEL and D_SEL = False).
This means that if the error signal ER is 0, the output signal MV is also 0. If an operating point 0 is required, in
other words a numerical value for the output signal when the error signal is zero, the I action must be activated.

ER

C_DIR

P

I

D

P_SEL

I_SEL

D_SEL

+
MV

Linear combination

Monitor and Control Instructions

SM Version 1.4 173 I4 Series

The step response of the P controller in the time domain is as follows:

MV (t) = KP * ER (t)

Figure 11-20 Step Response of the P Controller

3.13.10 PI Control

In a PI controller, the D action is disabled. (D_SEL = False). A PI controller adjusts the output variable MV using
the I action until the error signal ER becomes zero. This only applies when the output variable does not exceed
the limits of the manipulated value.

The step response in the time domain is as follows:

MV (t) = KP * ER (t) * (1 + ʃ dt / TI)

Figure 11-21 Step Response of the PI Controller

To allow a smooth changeover from the manual mode to the automatic mode of the PI controller, the output
signal is switched to the internal memory of the integrator when the manipulated variable is being adjusted
manually (SM_INIT must be True).

To achieve a purely integrating control action disable the P action with P_SEL.

3.13.11 PD Controller

In the PD controller, the I action is deactivated (I-SEL = False). This means that if the error signal ER is zero, the
output signal MV is also zero. If an operating point 0 is required, in other words a numerical value must be set for
the output signal when the error signal is zero, then the I branch must be activated.
With the I action, an operating point 0 can be specified for the P controller by setting an initialization value. To do
this, set switch ’SM_INIT’ and ’I_SEL’ to True.
The PD controller forms the input value ER(t) proportional to the output signal and adds the D action formed by
differentiating ER(t) that is calculated with twice the accuracy according to the trapezoidal rule (Padé
approximation). The time response is determined by the derivative action time TD. To damp signals and to
suppress disturbances, a first order time lag (adjustable time constant: DER_N) is integrated in the algorithm for
forming the D action. Generally, a small value (DER_N < 8) is adequate for DER_N to achieve a successful
outcome. If DER_N > 2/CYCLE is configured, the time lag is disabled.

The step response in the time domain is as follows:

MV (t) = KP * ER (t) * (1 + DER_N*TD*EXP(t*DER_N))

t

MV
MV(t)

ER(t)

MV

t

MV(t)

ER(t)

TI

KP * ER(t) ʃ dt / TI

KP * ER(t)

Monitor and Control Instructions

SM Version 1.4 174 I4 Series

Figure 11-22 Step Response of the PD Controller

3.13.12 PID Controller

In a PID controller, the P, I and D actions are activated (P_SEL, I_SEL, D_SEL = True). A PID controller adjusts
the output variable MV using the I action until the error signal ER becomes zero. This only applies when the
output variable does not exceed the limits of the manipulated value. If the manipulated variable range limits are
exceeded, the I action retains the value that was set when the limit was reached (anti reset wind-up). The PID
controller forms the input value ER (t) proportional to the output signal and adds the actions formed by
differentiating and integrating ER (t) that are calculated with twice the accuracy according to the trapezoidal rule
(Padé approximation). The time response is determined by the derivative action time TD and the reset time TI.

To damp signals and to suppress disturbances, a first order time lag (adjustable time constant: DER_N) is
integrated in the algorithm for forming the D action. Generally, a small value (DER_N < 8) is adequate for DER_N
to achieve a successful outcome. If DER_N > 2/CYCLE is configured, the time lag is disabled.

The step response in the time domain is as follows:

MV (t) = KP * ER (t) * (1 + ʃ dt / TI + DER_N*TD*EXP(t*DER_N))

Figure 11-23 Step Response of the PID Controller

3.13.13 Using and Assigning Parameters to the PID Controller

The PI/PID functions of the Standard PID Control are capable of controlling most processes in industry.
Functions and methods beyond the scope of this controller are only necessary in special situations .

One practical problem nevertheless remains the assignment of parameters to PI/PID controllers, in other words
finding the “right” settings for the controller parameters. The quality of the parameter assignment is the decisive
factor in the quality of the PID control and demands either considerable practical experience, specialist
knowledge or a lot of time.

MV

t

MV(t)

ER(t) KP * ER(t)

KP * ER(t) * DER_N*
TD*EXP(t*DER_N))

1/DER_N

MV

t

MV(t)

ER(t)

1/DER_N

TI

KP * ER(t)

KP * ER(t) * DER_N*
TD*EXP(t*DER_N))

Monitor and Control Instructions

SM Version 1.4 175 I4 Series

3.13.14 Permitted Ranges for TI and CYCLE

Due to the limited accuracy of the REAL numbers calculated in the CPU, the following effect can occur during
integration: If the sampling time CYCLE is too small compared with the reset time TI and if the input value ER of
the integrator is too small compared with its output value I, the integrator does not respond and remains at its
current output value.

This effect can be avoided by remembering the following rule when assigning parameters:

CYCLE > 10-4 * TI

With this setting, the integrator reacts to changes in the input values that are in the range of ten millionths of a
percent of the current output value:

ER > 10 -10 * I

To ensure that the transfer function of the integrator algorithm corresponds to the analog response, the sampling
time should be less than 20% of the reset time TI, in other words TI should be five times higher than the selected
sampling time:

CYCLE < 0.2 * TI

The algorithm permits values for the sampling time up to CYCLE ≤ 0.5 * TI.

3.13.15 Permitted Ranges for TD and CYCLE

To allow the derivative unit to process its calculation algorithm correctly in the CPU, keep to the following rules
when assigning the time constants:

TD ≥ CYCLE and

1 / DER_N ≥ 0.5 * CYCLE

If a value less than CYCLE is set, the derivative unit operates as if TD had the same value as CYCLE.

If 1/DER_N is set to a value < 0.5 * CYCLE, the derivative unit operates without a delay. The input step change is
then multiplied by the factor TD/CYCLE and this value is applied to the output as a “needle pulse”. This means
that in the next processing cycle, D is reset to zero.

3.13.16 Windup

Although many aspects of a control system can be understood based on linear theory, some nonlinear effects
must be accounted for in practically all controllers. Windup is such a phenomenon, which is caused by the
interaction of integral action and saturations. All actuators have limitations: a motor has limited speed, a valve
cannot be more than fully opened or fully closed, etc. For a control system with a wide range of operating
conditions, it may happen that the control variable reaches the actuator limits.
When this happens the feedback loop is broken and the system runs as an open loop because the actuator will
remain at its limit independently of the process output. If a controller with integrating action is used, the error will
continue to be integrated. This means that the integral term may become very large or, colloquially, it “winds up”.
It is then required that the error has opposite sign for a long period before things return to normal. The
consequence is that any controller with integral action may give large transients when the actuator saturates. The
standard PID has an internal mechanism in order to prevent controller wind up called Anti-Windup and is enabled
by default.

3.14 PWM Signal Generator (PWM_GEN)

Table 11-28 PWM_GEN instruction

LAD/ FBD Description

The pulse generator module transforms the input variable INV
modulating the pulse width into a pulse sequence with a period time,
which has to be configured in PERIOD.

The duration of a pulse per period is proportional to the input value. The
cycle set by RUN is not identical to the processing cycle of the pulse
generator.

Supported Properties: None

Monitor and Control Instructions

SM Version 1.4 176 I4 Series

Table 11-29 Data types for the parameters

Parameter Data type Description

RUN Bool Run mode

INV Real Input variable as duty cycle. 0 ≤ INV ≤ 100

PERIOD Time Period of PWM signal

Q Bool Pulse output

Application

The PWM generation function generates the pulse output of a continuous controller so that proportional actuators
can be controlled by pulses using the Standard PID Control. This allows PID two-step and three-step controllers
to be implemented with pulse width modulation.

3.15 PID Tuner by Relay Method (RELAY_TUNE)

Table 11-30 RELAY_TUNE instruction

LAD/ FBD Description

The PID autotuner works by performing a frequency-response
estimation experiment. It injects test signals into the plant and tune
PID gains based on an estimated frequency response based on
Relay (Åström–Hägglund) method.

Supported Properties: None

Table 11-31 Data types for the parameters

Parameter Data type Description

RUN Bool Run mode

PV Real Process variable

SV Real Setpoint value. The process variable (PV) will be oscillated around the
SP during the tunning process

TUN_MOD INT Tune mode. 0 = P, 1 = PI, 2 = PID

RSP_MOD INT Response mode. 0 = Normal, 1 = Conservative, 2 = Aggressive

CYCLE Time Sample time

MV Real Manipulated value

PHASE Int Current operating phase

QBUSY Bool 1 = Identifying, 0 = Process accomplished

KP Real Proportional gain

TI Real Reset time

TD Real Derivative time

CP0 Real Control parameter 0

CP1 Real Control parameter 1

Monitor and Control Instructions

SM Version 1.4 177 I4 Series

Static Members

MV_LO Real Low limit of mv

MV_HI Real High limit of mv

HYST Real Hysteresis (%)

Application

The performance of an automatic PID controller tuning method based on relay feedback is studied in the
presence of deterministic disturbances. It is found that the occurrence of any static load disturbance could cause
significant errors in the estimates of the ultimate gain and period. However, the resultant asymmetry of the relay
switching intervals can be used as an error indicator, or used to compute a self-corrective bias to restore
accuracy of the estimates. This corrective bias is found to be functional even in the presence of moderate
nonlinearity. A reliable self-biasing auto-tuner is thus resultant. The effect of a less common sinusoidal load could
be more serious since it may not be detectable and hence more prior knowledge about its presence is required.

You should use this tuner for applications that have a large time lag and large time consuming for using step
response tuners (see SELF_TUNE). For example, a furnace with at least one hour time lag step response should
be tuned by RELAY_TUNE.

When you change the RUN input from False to True, the tuning process will be started. It will be proceeded in
several phases and finally will be accomplished at phase 6. You can see current state of tuner by checking the
PHASE output. In phase 6 the tuner has been accomplished its internal examinations and generates PID
operation gains KP, TI, TD, CP0 and CP1 respected the TUN_MOD and RSP_MOD inputs. You can get PID
parameters for each operation mode while the tuner remains in phase 6. In the phase 6 if you change the RUN
input from True to False, its internal state will be reset.

3.16 Ramp Soak (RMP_GEN)

Table 11-32 RMP_GEN instruction

LAD/ FBD Description

The ramp soak RMP_GEN supplies the output variable OUT according
to a defined schedule. This function is started by setting the input bit
RUN. If the value for operation mode OP_MOD = True, the function is
started again at the first time slice outv[0] after the last time slice
outv[TMV_OUT_N] has been output. There is no interpolation between
the last and first time slice when operation mode is in cyclic repetition.

The sequence of the ramp soak is defined by specifying a series of time
slices (between coordinates) in a shared array of user data type (UDT)
with the time values TMV_OUT_S[i].TMV and the corresponding output
values TMV_OUT_S [i].OUTV.

TMV_OUT_S [i].TMV specifies the length of time of the time slices.
There is linear interpolation between the coordinates.

Supported Properties: None

Monitor and Control Instructions

SM Version 1.4 178 I4 Series

Table 11-33 Data types for the parameters

Parameter Data type Description

RUN Bool Run mode

DF_OUT Real Default output variable

DF_OUT_ON Bool Output default value on

TMS_N Int Time slice number

TM_CONT Time Time to continue

CONT_ON Bool Continue

HOLD Bool Hold output variable

OP_MOD Int Operation mode. 0 = Single run, 1 = Continue last value, 2 = Repeat all

RST_ON Bool Restart

CYCLE Time Sample time

TMV_OUT_N Int Number of coordinates

TMV_OUT_S Variant[*] Coordinates source is an array of structure. The structure must contains
'TMV' & 'OUT' elements

OUT Real Output variable

TGT_OUT Real Target output variable

QRMP_OP Bool Ramp operating

RMP_DIR Int Ramp direction. 0 = Disabled, 1 = Increasing, 2 = Soaking, 3 =
Decreasing

N_ATMS Int Number of acting time slice

PROG Real Progress (%)

RS_TM Time Residual slice time

T_TM Time Total time

RT_TM Time Residual total time

Figure 11-24 Ramp Soak with Start Point and Six Time Slices

TIP

With n time slices the time value TMV_OUT_S [n-1].TMV for the last time slice will be processed. The
processing time of a ramp soak is calculated from the initial value down to 0.

TIP

During the interpolation of the ramp soak between the time slices, the output value may pause occasionally if
the sampling time CYCLE is very small compared with the time between the time between the time slices
TMV_OUT_S [n].TMV. The ramp soak cannot produce flat linear forms arbitrarily because of the
computational accuracy
of the CPU. If the ramp soak is too flat, the output value will pause at the respective time slice for a while and
then integrates with the minimum gradient to the next time slice.

OUT

t

OUT(t)

0

1 2

3 4

5

TMV_OUT_S: TO

TO[1].OUT

TO[2].OUT

TO[3].OUT

TO[4].OUT

TO[5].OUT

Monitor and Control Instructions

SM Version 1.4 179 I4 Series

Remedy: Reduce the time between the time slices by inserting additional time slices. This way you will get the
ramp soak output closer to the desired flat ramp soak in a trapeze from.

3.16.1 Using the Ramp Soak

The time slice parameters TMV_OUT_N, TMV_OUT_S [i].TMV and TMV_OUT_S [i].OUT are located in an array
of an user data type (UDT).

• The parameter TMV_OUT_S [i].TMV must be specified in the Time format.

• The parameter TMV_OUT_S [i].OUT must be specified in the Real format.

• The way in which the coordinates and time slices are counted is illustrated in the following diagram.

Figure 11-25 Counting the Coordinates and Time Slices

In normal operation, the ramp soak interpolates according to the following function where 0 ≤ n ≤ (TMV_OUT_N-
1).

3.16.2 Configuring the Ramp Soak

The number of configured coordinates (TMV_OUT_N) and the values for the setpoint SP assigned to the
individual time slices can be monitored and are located in an array of user data type. The output of the ramp soak
begins at start point [0] and ends with the coordinate [TMV_OUT_N].

3.16.3 Modes of the Ramp Soak

By influencing the control inputs, the following ramp soak statuses and operating modes can be implemented:

1- Ramp soak on for a single run.

2- Default value at output of ramp soak.

3- Repetition on (cyclic mode).

4- Hold processing of the ramp soak (hold setpoint value).

5- Set the time slice and time to continue (the remaining time TM_CONT and the time slice number
TMS_N are redefined).

6- Update the total processing time and total time remaining.

3.16.4 Activating the Ramp Soak

The change in RUN from False to True activates the ramp soak. After reaching the last time slice, the ramp soak
(curve) is completed. If you want to restart the function manually, RUN must first be set to False then back to
True.

During a complete restart, the OUT output is reset to 0.0 and the total time or total remaining time is calculated.
When it changes to normal operation, the ramp soak is processed immediately from the start point according to
the selected mode. If you do not require this, the parameter RUN when the complete restart must be set to False.

 WARNING

The function block does not check whether an array with the length TMV_OUT_N exists or not and whether
the parameter TMV_OUT_N number of time slices matches the array length. If the parameter assignment is
incorrect, the CPU changes to STOP due to an internal runtime error.

OUT

t

Start point

TO[0].TMV

TMV_OUT_S: TO
TMS_N=0

TO[1].TMV TO[2].TMV

TO[0].OUT
TO[0].TMV

Coordinate 1

TO[1].OUT
TO[1].TMV

Coordinate 2

TO[1].OUT
TO[1].TMV

Monitor and Control Instructions

SM Version 1.4 180 I4 Series

3.16.5 Preassigning the Output, Starting the Traveling Curve

If DF_OUT_ON = True, the output value of the ramp soak is set to the signal value DF_OUT. If DF_OUT_ON =
False, the curve starts from this point.

TIP

The switch DF_OUT_ON only has an effect when the ramp soak is activated (RUN = True).

The changeover from DF_OUT_ON =False is followed by the linear adjustment of OUT from the selected
setpoint to the output value of the current time slice number TMV_OUT_S[N_ATMS].OUT.

Internal time processing is continued even when a fixed setpoint is applied to the output (RUN = True and
DF_OUT_ON = True).

Figure 11-26 Influencing the Ramp Soak with the Default Signal DF_OUT_ON

When the ramp soak is started with RUN = True, the fixed setpoint DF_OUT is output until DF_OUT_ON
changes from True to False after the time T*. At this point, the time TO[0].TMV and part of the time TO[1].TMV
has expired. The output value OUT is moved from DF_OUT to TO[2].OUT.

The configured curve is only output starting at coordinate 2, where the output signal QRMP_OP changes to the
value True. When the preassigned signal DF_OUT_ON changes from False to True while the travel curve is
being executed, the output value OUT jumps without delay to DF_OUT.

3.16.6 Cyclic Mode On

If the cyclic repetition mode is turned on (OP_MOD=2), the ramp soak returns to the start point automatically
after outputting the last time slice value and begins a new cycle.

There is no interpolation between the last time slice and the start point. The following must apply to achieve a
smooth transition: TMV_OUT_S[TMV_OUT_N-1].OUT = TMV_OUT_S [0].OUT.

3.16.7 Hold Setpoint Value

With HOLD = True, the value of the output variable (including the time processing) is frozen. When this is reset
(HOLD = False), the ramp soak continues at the point of interruption TMV_OUT_S[x].TMV.

RUN

DF_OUT_ON

OUT

t

OUT(t)

configured curve
current curve

DF_OUT

QRMP_OP

0

1
2

3 4

5

T*

TMV_OUT_S: TO
TMS_N=0

TO[0].TMV

Monitor and Control Instructions

SM Version 1.4 181 I4 Series

Figure 11-27 The Effect of the Hold Signal HOLD on the Ramp Soak

The processing time of the ramp soak is increased by the hold time T*. The ramp soak follows the configured
curve from the time slice to the signal change for HOLD (False → True) and from time slice 5* to time slice 6*, in
other words the output signal QRMP_OP has the value True.

3.16.8 Selecting the Time Slice and Time to Continue

If the control input CONT_ON is set to True to continue processing, then processing continues at the time
TM_CONT with the time slice TMS_N. The time parameter TM_CONT determines the time remaining that the
ramp soak requires until it reaches the destination time slice TMS_N.

OUT

t

OUT(t)

HOLD

DF_OUT_ON

0

1 2

3 4

5 5*

6 6*

T*

configured curve

current curve

 * current values

TMV_OUT_S: TO
TMS_N=0

TO[4].TMV + T*

QRMP_OP

Configured time

Monitor and Control Instructions

SM Version 1.4 182 I4 Series

Figure 11-28 How the HOLD Hold Signal and the CONT_ON Continue Signal Affect the Ramp Soak

The following applies to the example: If HOLD = True and CONT_ON = True and if the following is selected

time slice number to continue TMS_N = 5 and time remaining to selected time slice TM_CONT = T* then the
configured coordinates 3 and 4 are omitted in the processing cycle of the ramp soak. After a signal change at
HOLD from True to False the curve only returns to the configured curve starting at coordinate 5.

The output QRMP_OP is only set when the ramp soak has worked through the curve configured by the user.

3.16.9 Updating the Total Time and Total Time Remaining

In every cycle, the current time slice number N_ATMS, the current time remaining until the time slice RS_TM is
reached, the total time T_TM and the total time remaining until the end of the ramp soak RT_TM is reached are
updated.

If there are on-line changes to TMV_OUT_S[n].TMV, the total time and the total time remaining are changed.
Since the calculation of T_TM and RT_TM greatly increases the run time of the function block if there are a lot of
time slices, the calculation is only performed after a complete restart or when RST_ON = True. The time slices
TMV_OUT_S [0to TMV_OUT_S-1].TMV between the individual coordinates are totalled and indicated at the
output for the total time T_TM and for the total remaining time RT_TM.

Please remember that the calculation of the total times requires a relatively large amount of CPU time.

OUT

OUT(t)

t

CONT_ON

HOLD

Configured time

No reaction

T*

0

1 2

3 4

5* 5 6* 6

QRMP_OP

configured curve

 * current values

current curve

TMV_OUT_S: TO
TMS_N=0

Current time

Monitor and Control Instructions

SM Version 1.4 183 I4 Series

3.17 Limiting the Rate of Change of a Value (ROC_GEN)

Table 11-34 ROC_GEN instruction

LAD/ FBD Description

The ROC_GEN function limits the rate of change of the setpoints
processed in the controller separately for the rate of change up and rate
of change down and also separately for the positive and negative ranges.

The limits for the rate of change of the ramp function in the positive and
negative range of the reference variable are entered at the four inputs
UPRLM_P, DNRLM_P, UPRLM_N and DNRLM_N. The rate of change is
an up or down rate per second. Faster rates of change in the setpoint are
delayed by these limits.

If, for example, UPRLM_P is configured to 10.0 [technical range of
values/s], the following values are added to the ’old value’ of OUT in
each sampling cycle as long as inv > OUT:

Sample time

1 s → OUT old + 10

100 ms →OUT old + 1

10 ms →OUT old + 0.1

How signals are handled by the function is illustrated by the following
figure based on an example. Step functions at the input INV(t) become
ramp functions at output OUT(t).

Supported Properties: None

Table 11-35 Data types for the parameters

Parameter Data type Description

RUN Bool Run mode

INV Real Input variable

UPRLM_P Real Up rate limit in positive range

DNRLM_P Real Down rate limit in positive range

UPRLM_N Real Up rate limit in negative range

DNRLM_N Real Down rate limit in negative range

H_LM Real Input variable high limit

L_LM Real Input variable low limit

CYCLE Time Sample time

OUT Real Output variable

QH_LM Bool Output variable high limit

QL_LM Bool Output variable low limit

Monitor and Control Instructions

SM Version 1.4 184 I4 Series

Figure 11-29 Limiting the Rate of Change of the Input Variable INV(t)

No signal is output when the rate of change limits are reached.

3.18 Scale (SCALE)

Table 11-36 SCALE instruction

LAD/ FBD Description

Scales the normalized real parameter INV where (0.0 <= INV <= 1.0) in
the data type and value range specified by the OUT_L and OUT_H
parameters:

OUT = INV (OUT_H - OUT_L) + OUT_L

Supported Properties: None

Table 11-37 Data types for the parameters

Parameter Data type Description

INV AnyNum Input variable

OUT_L AnyNum Output low limit

OUT_H AnyNum Output high limit

OUT AnyNum Scaled output

3.19 Gain Scheduling (SCH_GEN)

Table 11-38 SCALE instruction

LAD/ FBD Description

The SCH_GEN generates a signal by using an array of key value pair
and maps the change in input variable INV to output OUT by the
schedule table SCHD_S.

OUT(t) INV
OUT

t 0

UPRLM_P

INV(t)

DNRLM_P

UPRLM_N

DNRLM_N

UPRLM_P

Monitor and Control Instructions

SM Version 1.4 185 I4 Series

Supported Properties: None

Table 11-39 Data types for the parameters

Parameter Data type Description

INV Real Input variable

KV_N Int Number of key value pairs. 2 =< x <= 8

SCHD_S Real[*,*] Schedules list source. Key value pairs of (INV,OUT)

OUT Real Output variable

Application

Gain scheduling is valuable to adjust the controller parameters to different operating points, if a nonlinear process
shows a different behavior for each of its operating points.

The schedule for the adaptation of the parameters is determined by separate experiments at each of the different
operating points and is stored in the SCH_GEN function block. During a change between operating points the
controller automatically retrieves the correct parameters in the schedule. A new identification of the process
behavior according to new measurement data is not necessary, in contrast to a fully adaptive controller.
However, gain scheduling can be applied only if the nonlinearity of the process can be traced back to only one
measurable process variable in a reproducible way.

3.20 Scale With Parameters (SCP_NORM)

Table 11-40 SCP_NORM instruction

LAD/ FBD Description

The instruction will take input, use input minimum IN_L and maximum
IN_H parameters as well as outputs minimum OUT_L and maximum
OUT_L parameters and convert the output scaling based on them.

This function commonly used for working with analog signals

Supported Properties: None

Table 11-41 Data types for the parameters

Parameter Data type Description

INV AnyNum Input variable

IN_L AnyNum Input low limit

IN_H AnyNum Input high limit

OUT_L AnyNum Output low limit

OUT_H AnyNum Output high limit

OUT AnyNum Scaled output

Monitor and Control Instructions

SM Version 1.4 186 I4 Series

Figure 11-30 SCP_NORM normalization curve

NOTICE

The function does not limit any values and the parameters are not checked. If you enter the same value for
IN_L and IN_H, division by zero can occur in the function. The function does not rectify this fault.

3.21 PID Self Tuner (SELF_TUNE)

Table 11-42 SELF_TUNE instruction

LAD/ FBD Description

One tuning method presented by Ziegler and Nichols is based on a
process information in the form of the open-loop step response obtained
from a bump test. This method can be viewed as a traditional method
based on modeling and control where a very simple process model is
used. The step response is characterized by its parameters and the
controller parameters are then obtained from the characterized process
parameters.

Supported Properties: None

Table 11-43 Data types for the parameters

Parameter Data type Description

RUN Bool Run mode

PV Real Process variable

TUN_MOD Int Tune mode. 0=P, 1=PI, 2=PID

RSP_MOD Int Response mode. 0=Normal, 1=Conservative, 2=Aggressive

CYCLE Time Sample time

ACCUTUNE Bool Tune accurately and more robust but more time consuming

MV Real Manipulated value

OUT

INV IN_L IN_H

OUT_H

OUT_L

Monitor and Control Instructions

SM Version 1.4 187 I4 Series

PHASE Int Current operating phase

QBUSY Bool 1 = Identifying, 0 = Process acomplished

DELAY Time Time lag include any existing dead time

RANK Int Controllability rank. x>100 : Easy, 30<x<100 : Somewhat Easy, x<30 :
Difficult

KP Real Proportional gain

TI Real Reset time

TD Real Derivative time

CP0 Real Control parameter 0

CP1 Real Control parameter 1

Static Members

MV_STP Real Manipulated value step

MAN_MV Real Initial manual power

WRM_TM Time Warmup time

WRM_MVT Time Manual power startup time

WRM_INT Time Warmup evaluation interval

MAN_INT Time Manual evaluation interval

STD_TH Real Steady state threshold

STRT_TH Real Start state threshold

CONT_STP Int Continue tuning steps count

CUR_STP Int Current tuning step

3.21.1 Area of Application

PID SELF_TUNE is particularly useful for the following:

• Temperature controls (main application)

• Level controls

• Flow controls

In flow controls, a distinction must be made between situations in which only the control valve itself must be
controlled and situations in which the control valve regulates a process involving a time lag. The PID
SELF_TUNE cannot be used for simple control of a valve.

3.21.2 Process Requirements

The process must meet the following requirements:

• Stable, time lag, asymptotic transient response

• Time lags not too large

• Adequate linear response with an adequately large operating range

• Process controllable with a monopolar actuating signal 0 to 100%

• Little disturbance in temperature processes

• Adequate quality of the measured signals in the sense of an adequately high signal-to-noise ratio.

• Process gain not too high

3.21.3 Transient Response

The process must have a stable, asymptotic transient response with time lag.

After a step change in the manipulated variable (MV) the process variable must change to a steady state as
shown in following figure. This therefore excludes processes that have an oscillating response without control
and processes that are not self-regulating (integrator in the process).

Monitor and Control Instructions

SM Version 1.4 188 I4 Series

Figure 11-31 Process Response

3.21.4 Time Lags

The process must not involve large time lags. The range of application can be specified. The time lag includes
any existing dead time. Most temperature processes are within the default configurations of the function block
both a PI or a PID controller can be designed for this range.

3.21.5 Linearity and Operating Range

The process must have an adequately linear response over an adequately large operating range.
This means that both during identification and during normal controlled operation, non-linear effects within the
operating range can be ignored. It is, however possible to re-identify the process when the operating point
changes if the adaptive process is repeated in the close vicinity of the new operating point and providing that the
non-linearity does not occur during the adaptation.

If certain static non-linearities (for example valve characteristics) are known, it is always advisable to compensate
these with a ramp soak to linearize the process behavior or use gain scheduling method in order to set suitable
PID parameters for each individual working are of process.

3.21.6 Monopolar Actuating Signal

It must be possible to control the process with a monopolar actuating signal.
Processes requiring active heating and active cooling for temperature control cannot currently be optimized with
the PID Self-Tuner.

3.21.7 Disturbances in Temperature Processes

Disturbances such as thermal transfer to neighboring zones or heating or cooling due to changes in the
equipment status must not affect the overall temperature process to any great extent. In some circumstances,
adaptation at the operating point is necessary.

3.21.8 Quality of the Measured Signals

The quality of the measured signals must be adequate, in other words the signal-to-noise ratio must be high
enough.

3.21.9 Process Gain

The process gain must not be too high.

Normalization of the process values is not required. The process gain K can, in some circumstances, include
physical units, for example:

PV

t

Process response to
a manipulated value
step change

Monitor and Control Instructions

SM Version 1.4 189 I4 Series

𝐾 =
∆𝑃𝑉

∆𝑀𝑉
, [𝐾] =

℃

%

The final controller design is based on a calculation of the process gain K and can therefore, in principle,
compensate any values of K. During the learning phase, however, K is initially unknown and with extreme
combinations of gain and test step change, overshoot cannot be avoided.

3.21.10 Processes with a Control Valve with Integral Action

In processes with control valves with an integral action, there are further requirements in addition to those above:

The motor actuating time of the control valve must be less than the time required to find a point of inflection
following a step change in the manipulated value.

If this is not the case, the process involved is often a flow control in which only the control valve is effective as the
dominating process action. The use of the PID Self-Tuner is then not advisable. You can the set the PI step
controller according to the following rule of thumb:

GAIN (KP) = 1, TI = control valve actuating time

3.21.11 Learning Phases

The learning process involves the following steps:

• PHASE = 0:
When an instance of SELF_TUNE FB is created or the tuner is disabled, the parameter PHASE has the
default zero.

• PHASE = 1-5:
Tunning transition steps

• PHASE = 6:
In this phase, the tuner generates optimized parameters relative to the TUN_MOD and RSP_MOD.
You can get PID parameters for each operation mode while the tuner remains in phase 6. In the phase 6
if you change the RUN input from True to False, its internal state will be reset and the tuner will go to
PHASE 0.

NOTICE

Before activating RUN, the process must be in a steady state otherwise, you must then wait until the process
variable remains constant. This achieves a steady state (“cold” process state, initial state).

TIP

If it takes an extremely long time until the steady state is reached (creeping transient response in temperature
processes) you can lower the steady state threshold by increasing 5% the STD_TH value until pass the
current tunning phase.

TIP

If the process cannot start by suddenly change in MV from cold state, you should set a value greater than
T#0s for WRM_TM static member to enable the warmup process. For example, some furnaces need a
warmup process in order to be applicable otherwise they may damage due to sudden temperature change.

TIP

If the process is not linear or you want to run a gain scheduling program for PID parameters, you can set a
value greater than 0 for CONT_STP static member. In this case the controller repeats learning phases for a
number of steps determined by CONT_STP. For example, if you want to get parameters for a nonlinear
furnace you can set a value 3 for CONT_STP so, the learning phases will be repeated 3 times. Every repeat
learning phase will be increasing the MV by the value specified by MV_STP. When a learning phase
accomplishes, the QBUSY is set to false. You can check this flag in order to realize that the current learning
phase has been finished and pick the generated parameters by self-tuner. In the next cycle the QBUSY will be
set in order to show a new learning phase has been started.

Monitor and Control Instructions

SM Version 1.4 190 I4 Series

3.22 Extracting the Square Root Normalization (SQRT_NORM)

Table 11-44 SQRT_NORM instruction

LAD/ FBD Description

If the input variable supplied by a sensor is a physical value that is in
a quadratic relationship to the measured input variable, the changes
in the input variable must first be linearized before they can be
processed further in the other signal conditioners.

Supported Properties: None

Table 11-45 Data types for the parameters

Parameter Data type Description

INV AnyNum Input variable

SQRT_HR AnyNum Normalization high range

SQRT_LR AnyNum Normalization low range

OUT AnyNum Normalized output

Figure 11-32 The square root normalization

OUT

SQRT_HR

0 100

SQRT_LR

Monitor and Control Instructions

SM Version 1.4 191 I4 Series

3.23 Stack Collection (STACK)

Table 11-46 STACK instruction

LAD/ FBD Description

A stack is an array structure of function calls and parameters used in
modern computer programming and CPU architecture. Elements in a
stack are added or removed from the top of the stack, in a “last in first,
first out” or LIFO order.

Supported Properties: None

Table 11-47 Data types for the parameters

Parameter Data type Description

N Int Maximum depth after reset

PUSH Bool Basic stack operations

POP Bool Basic stack operations

R1 Bool Over-riding reset

IN Variant Input to be queued

OUT Variant First element data

BUFFER Variant[*] External array

EMPTY Bool Stack empty

OFLO Bool Stack overflow

3.24 Three Step Signal Generator (THREE_STEP_GEN)

Table 11-48 THREE_STEP_GEN instruction

LAD/ FBD Description

Three step generator for PIDs when both the direct and inverse control
works together. In the “three-step generator” mode, the actuating signal
can have three states, for example depending on the actuator and
process: more – off – less, forwards – stop – backwards, heat – off –
cool etc.

Supported Properties: None

Monitor and Control Instructions

SM Version 1.4 192 I4 Series

Table 11-49 Data types for the parameters

Parameter Data type Description

INV1 Real Input variable 1

INV2 Real Input variable 2

COEFF1 Real Input variable 1 coefficient

COEFF2 Real Input variable 2 coefficient

DEADB_W Real Dead band width

FALS_DB Bool Falsify error outside dead band. 0=Disabled, 1=Enabled

OUT1 Real Output 1

OUT2 Real Output 2

QOUT1DB Bool INV1 is within dead band

QOUT2DB Bool INV2 is within dead band

3.25 Weighing System (WEIGH)

Table 11-50 WEIGH instruction

LAD/ FBD Description

Complete weighing system with Zero, Tare and calibration functions.

Supported Properties: None

Table 11-51 Data types for the parameters

Parameter Data type Description

GRS_WT Real Raw value from loadcell (gross weight)

TARE Bool Command for Tare when the system is calibrated

ZERO Bool Command for zero when the calibration starts

CALIB Bool Command for calibration when the calibration finishes

REF_WT Real Reference weight when the calibration finishes

OUT Real Scaled output

Technology Instructions

SM Version 1.4 193 I4 Series

12 Technology Instructions

Throughout a development process of control systems, control engineers deal with challenges like shorter
development time, higher quality and flexibility requirements and reusability of the control code. Since existing
technologies and approaches are limited by their effectiveness, new approaches are needed. This chapter will
provide common but high-level application solutions in order to lowering the programming time for PLC
developers.

TIP

Some technology instructions may need a valid license to be compiled. In order to activate these instructions,
you should install license files on your programming device. To obtain a license file, you must contact the
INTELART's support unit.

Technology Instructions

SM Version 1.4 194 I4 Series

1. Temperature Control

Temperature Controllers control temperature so that the process variable will be the same as the set point, but
the response will differ due to the characteristics of the controlled object and the configurations of the
Temperature Controller. Typically, a response where the set point is reached as quick as possible without
overshooting, is required in a Temperature Controller. There are also cases where a response quickly increases
the temperature even if it overshoots is required or where a response slowly increases the temperature is
required.

1.1 Temperature Control by TEMP_CONTROLLER

Table 12-1 TEMP_CONTROLLER instruction

LAD/ FBD Description

Temperature control is a process in which change of temperature of a
space, or of a substance, is measured or otherwise detected, and the
passage of heat energy into or out of the space or substance is adjusted
to achieve a desired temperature. TEMP_CONTROLLER provides a
complete function block optimized for temperature control with algorithms
for loading and storing patterns and programs.

Supported Properties: None

Table 12-2 Data types for the parameters

Parameter Data type Description

PV Real Process variable

MIN_SP Real Minimum allowed value for setpoints

MAX_SP Real Maximum allowed value for setpoints

MAN_MV Real Manual manipulated variable (%)

MAN_SP Real Manual setpoint value

Technology Instructions

SM Version 1.4 195 I4 Series

CYCLE Time Sample time of controller

HOLD Bool Hold current setpoint

STARTUP Bool Initialize controller on startup

OPTIM_ON Bool Optimizer enable. 0=Disabled, 1=Enabled

MAN_ON Bool Manual value on (variable MAN_MV)

MAN_SP_ON Bool Manual setpoint on. 0=Ramp/Soak, 1=Step

ACK_ALM Bool Acknowledge alarm

PTRN_CNT Int[*] Program patterns table count

PTRN_TMT Time[*,*] Program patterns time table

PTRN_SPT Real[*,*] Program patterns setpoint table

PRG_TABLE Variant[*] Program table

SELF_TUNER SELF_TUNE Self-tuner instance (Optional)

OPTIMIZER TEMP_OPT Optimizer instance (Optional)

MV Real Manipulated variable (%)

TGT_SP Real Target setpoint

CUR_SP Real Current setpoint

PROG Real Progress (%)

CON_DEV Real Control deviation (%)

RS_TM Time Residual slice time

T_TM Time Total elapsed time

RT_TM Time Residual total time

TUN_DELAY Time Delay of system response

ALARM Int Alarm.

• 1=Warmup timeout

• 2=Temperature under range

• 3=Temperature over range

• 4=Invalid program table

• 5=Invalid time patterns

• 6=Invalid setpoint patterns

• 7=Invalid tuner instance

• 8=tune while control impossible

• 9=null optimizer

• 10=No program found

RMP_DIR Int Ramp direction.

• 0 = Disabled

• 1 = Increasing

• 2 = Soaking

• 3 = Decreasing

N_ATMS Int Number of acting time slice

TUN_PHASE Int Current tunning operation phase

TUN_RANK Int Rank of system controllability.

• x<30 : Weak

• 30<x<100: Moderate

• x>100: Good

QRMP_OP Bool Ramp operating

QCON_ON Bool Control process run

QPWR_ON Bool Main power switch

QTUNNING Bool Tunning is in process.

True = Identifying

False = Tune accomplished

Static Members

PID_CONTROLLER PID_STD Internal PID Controller Instance

OPTIM_RMP Real Deviation suppressor threshold in ramp when optimizer enabled
(%)

OPTIM_RMP_SPAN Real Ramp span when optimizer enabled (%)

Technology Instructions

SM Version 1.4 196 I4 Series

OPTIM_STD_UP Real Deviation suppressor threshold in soak up when optimizer enabled
(℃)

OPTIM_STD_DN Real Deviation suppressor threshold in soak down when optimizer
enabled (℃)

WDOG_SPAN Real Watchdog Range (℃)

MAX_RMP_RATE Real Maximum rate of SP ramp (℃/M)

CUTOFF_TEMP Real Cutoff temperature

CON_WRM_TEMP Real Controller warmup temperature

CON_WRM_POWER Real Controller warmup end power

CON_WRM_TMV Time Controller warmup time value

CON_WRM_TMOUT Time Controller warmup timeout

TUN_WRM_TMV Time Tuner warmup time value

MAN_DS_PULUP_TRG Time Dev supp pull up time trigger in manual setpoint mode

MAN_DS_PULDN_TRG Time Dev supp pull down time trigger in manual setpoint mode

PWR_LOSS_ACT Int Power loss action.

• 0=Stop

• 1=Hold

• 2=Restart

• 3=Continue

START_MOD Int Operation start Mode.

• 0=Normal

• 1=Start from Current PV

• 2=Start from current PV subtract warmup time

STOP_MOD Int Operation stop mode

• 0 = Single run

• 1 = Continue last value

• 2 = Repeat all

CUTOFF_MOD Int Cutoff mode.

• 0=Absolute

• 1=Relative

CUR_PTRN Int Set current selected pattern

CON_MOD Int Control mode.

• 0=P

• 1=PI

• 2=PID

TUN_RSP_MOD Int Response mode.

• 0=Normal

• 1=Conservative

• 2=Aggressive

PRG_CNT Int Current loaded program count

CMD_START_CON Bool Start controller command

CMD_STOP_CON Bool Stop controller command

CMD_START_TUN Bool Start self-tuner command

CMD_STOP_TUN Bool Stop self-tuner command

CMD_SKIP_STEP Bool Skip to next program command

CMD_LOAD_PTRN Bool Loads a pattern to program table

CMD_STORE_PTRN Bool Stores program table to patterns source and ensures ramps rate
be lower than 'MAX_RMP_RATE'

CMD_CLR_ALL Bool Clear all pattern program tables

SM_INIT Bool Smooth initialization.

• False=Disabled

• True=Enabled

CON_WRM_ON Bool Controller warmup enabled.

• False=Disabled

• True=Enabled

WDOG_ON Bool Watchdog enable.

Technology Instructions

SM Version 1.4 197 I4 Series

• False=Disabled

• True=Enabled

ACCUTUNE Bool Tune accurately and more robust but more time consuming

QPRG_TABLE_UPD Bool Program table updated

1.2 Temperature Control Optimizer (TEMP_OPT)

Table 12-3 TEMP_OPT instruction

LAD/ FBD Description

Optimizer for ramp/soak temperature control by connecting a ramp
generator and a PID controller.

Supported Properties: None

Table 12-4 Data types for the parameters

Parameter Data
type

Description

RUN Bool Run mode

PID_INST Variant An INTELART PID function block instance

RMP_INST Variant An INTELART Ramp generator function block instance

Static Members

STD_PULUP_DEV Real Deviation suppressor Pull up threshold in steady state

STD_PULDN_DEV Real Deviation suppressor Pull down threshold in steady state

INC_RMP_SPN Real Increasing ramp span. 0 < x < 100

INC_PULUP_DEV Real Deviation suppressor Pull up threshold (%) in increasing state

INC_PULDN_DEV Real Deviation suppressor Pull down threshold in increasing state

INC_HOLD_G Real Gain when an increasing ramp process holds

INC_RST_G Real Resting gain in increasing state

DEC_RMP_SPN Real Decreasing ramp span. 0 < x < 100

DEC_PULUP_DEV Real Deviation suppressor Pull up threshold in decreasing state

DEC_PULDN_DEV Real Deviation suppressor Pull down threshold in decreasing state

DEC_HOLD_G Real Gain when an decreasing ramp process holds

DEC_RST_G Real Resting gain in decreasing state

APP_RT Real Approaching rate. 0 < x < 1

RST_RT Real Resting rate. 0 < x < 1 (calculates automatically on start)

ADAPT_ON Bool Adaptive optimization on

STD_ON Bool Enable deviation suppressor in steady state

STD_PCT Bool Enable calc on percentage of error in steady state

INC_ON Bool Enable deviation suppressor in increasing state

INC_PCT Bool Enable calc on percentage of error in increasing state

DEC_ON Bool Enable deviation suppressor in decreasing state

DEC_PCT Bool Enable calc on percentage of error in decreasing state

Online and Diagnostic Tools

SM Version 1.4 198 I4 Series

13 Online and Diagnostic
Tools

The "Online & diagnostics" shows the diagnostic status and tools of the device.

Online and Diagnostic Tools

SM Version 1.4 199 I4 Series

1. Status LEDs

The CPU and the I/O modules use LEDs to provide information about either the operational
status of the module or the I/O.

1.1 Status LEDs on a CPU

The CPU provides the following status indicators:

POWER

• Solid green indicates device has been powered up

STOP/RUN

• Off indicates STOP mode

• Solid green indicates RUN mode

• Flashing indicates that the CPU is in TRANSIENT-TO-RUN or TRANSIENT-TO-STOP mode

ERROR

• Solid red indicates an error, such as an internal error in the CPU or a configuration error (mismatched
modules)

2. Going online and connecting to a CPU

An online connection between the programming device and CPU is required for loading programs and project
engineering data as well as for activities such as the following:

• Testing user programs

• Displaying and changing the operating mode of the CPU

• Displaying and setting the date and time of day of the CPU

• Displaying the module information

• Downloading user program

• Displaying diagnostics data

• Using a watch table to test the user program by monitoring and modifying values

• Using a force table to force values in the CPU

To establish an online connection to a configured CPU, click the CPU from the Plant Explorer
and click the "Go online" button on the main toolbar.

If this is the first time to go online with this CPU, you probably must set interface configuration before establishing
an online connection to a CPU found on that interface.

Your programming device is now connected to the CPU. The green color of status bar indicates an online
connection. You can now use the Online & diagnostics tools from the Plant Explorer and the Online tools.

Online and Diagnostic Tools

SM Version 1.4 200 I4 Series

3. Displaying the status of the CPU

You can view the status of an online CPU. Double-click on the “Online & diagnostic” in the Plant Explorer pane
then, go to Status tab in the opened editor.

4. Setting the date and time of day

You can set the date and time of day in the online CPU. After accessing "Online & diagnostics" from the Plant
Explorer for an online CPU, you can display or set the time and date parameters of the online CPU in the Options
tab.

5. Displaying or setting CPU configuration

You can display or set the configuration in the online CPU. After accessing "Online & diagnostics" from the Plant
Explorer for an online CPU, go to the Options tab.

NOTICE

Changing in CPU configuration will be taken effect only after restarting the CPU.

6. Resetting to factory settings

You can reset an I4PLC to its original factory settings under the following conditions:

• The CPU is in STOP mode

Online and Diagnostic Tools

SM Version 1.4 201 I4 Series

• Your programming device is disconnected from the CPU

• The connection configuration is set correctly (you can go online to the CPU)

NOTICE

If the CPU is in RUN mode and you start the reset operation, you will get an error. You must place it in STOP
mode by RUN/STOP switch.

6.1 Procedure

To reset a CPU to its factory settings, follow these steps:

1- Open the Online and Diagnostics view of the CPU.

2- Make sure you are offline to the CPU.

3- Click the "Factory Reset" button.

4- Acknowledge the confirmation prompt with "Yes".

6.2 Result

The CPU is reset to the factory settings:

• The load memory and all operand areas are cleared.

• All parameters are reset to their defaults.

7. CPU operator toolbar for the online CPU

The "CPU operator toolbar" displays the operating mode (STOP or RUN) of the online CPU. The status bar also
shows information about CPU and whether the CPU has an error or is in emergency stop.

Use the CPU operating toolbar of the Online Tools to change the operating mode of an online CPU. The Online
toolbar is accessible whenever the CPU is online.

8. Monitoring and modifying values in the CPU

Intelart Studio provides online tools for monitoring the CPU:

• You can display or monitor the current values of the tags. The monitoring function does not change the
program sequence. It presents you with information about the program sequence and the data of the
program in the CPU.

• You can also use other functions to control the sequence and the data of the user program:

• You can modify the value for the tags in the online CPU to see how the user program responds.

• You can force a peripheral output (such as Q0.1 or "Start") to a specific value.

• You cannot enable outputs in STOP mode.

 WARNING

Always exercise caution when using control functions. These functions can seriously influence the execution
of the user/system program.

8.1 Going online to monitor the values in the CPU

To monitor the tags, you must have an online connection to the CPU. Simply click the "Go Online"
button in the toolbar.

When you have connected to the CPU, Intelart Studio turns the status bar green.

To monitor the execution of the user program and to display the values of the tags,
go to “Watch & Force List” in Plant Explorer then, click the "Watch Continuously"
button in the toolbar.

Online and Diagnostic Tools

SM Version 1.4 202 I4 Series

8.2 Displaying status in the program editor

You can monitor the status of the tags in the LAD and FBD program editors. Use
the editor bar to display the LAD editor. The editor bar allows you to change the
view between the open editors without having to open or close the editors.

In the toolbar of the program editor, click the "Monitor Continuously" button to display the status of your user
program.

The network in the program editor displays power flow in green.

You can also right-click on the instruction or parameter to modify the value for the instruction.

TIP

When you enable a watchlist
monitoring or a program block
monitoring, Intelart Studio turns the status bar orange.

8.3 Using a watch table to monitor and modify values in the CPU

A watch table allows you to perform monitoring and control functions on data points as the CPU executes your
program. These data points can be process image (I or Q), M or G on the monitor or control function. You cannot
accurately monitor the physical outputs (Q) because the monitor function can only display the last value written
from Q memory and does not read the actual value from the physical outputs. The monitoring function does not
change the program sequence. It presents you with information about the program sequence and the data of the
program in the CPU.

Control functions enable the user to control the sequence and the data of the program.

Caution must be exercised when using control functions. These functions can seriously influence the execution of
the user/system program. The two control functions are Modify and Force.

With the watch table, you can perform the following online functions:

• Monitoring the status of the tags

• Modifying values for the individual tags

• Forcing values in the CPU

Online and Diagnostic Tools

SM Version 1.4 203 I4 Series

• Logging tags data in a csv file on the programming device

Add new watchlist item by clicking on the “Add New Item’ button in the toolbar.

Enter the tag name to monitor and select a display format from the dropdown selection. With an online
connection to the CPU, clicking the "Watch Continuously " button displays the actual value of the data point in the
"Monitor value" field.

The “Modify Selected Items” button modifies the selected tag values by the value
provided by “Modify Value” cell.

The “Start Force Selected Items” provides a force function that overwrites the value for a memory or output point
to a specified value for the memory tags or peripheral output address. The CPU applies this forced value to the
memory tags on demand and output process image before the outputs are written to the modules.

You cannot force an input ("I" address).

In the "Force value" cell, enter the value for the input or output to be forced. You can then use the check box in
the "Select" column to enable forcing of the memory or output.

Use the " Start Force Selected Items" button to force the value of the tags in the table. Click the " Stop
Force Selected Items" button to reset the value of the selected forced tags.

In the table, you can monitor the status of the forced value for a tag. You can also view the status of the forced
value in the program editor.

NOTICE

When a tag is forced, the force actions become part of the current executing program. If you close Intelart
Studio, the forced elements remain active in the CPU program until they are cleared or a CPU STOP. To clear
these forced elements, you must use Intelart Studio to connect with the online CPU and then use the watchlist
to turn off or stop the force function for those elements.

In the program, reads of physical inputs overwrites the forced value. The program uses the forced value in
processing. When the program writes a physical output, the output value is overwritten by the force value. The
forced value appears at the physical output and is used by the process.

When a tag or output is forced in the watchlist, the force actions become part of the current executing program.
Even though the programming software has been closed, the force selections remain active in the operating CPU
program until they are cleared by going online with the programming software and stopping the force function. A
CPU STOP will clear all the forces states also.

9. Recovery from a lost password

If you have lost the password for a password-protected CPU, you must use factory reset tool (6Resetting to
factory settings).

10. Runtime Exceptions

Runtime is a stage of the programming lifecycle. It is the time that a program is running alongside all the external
instructions needed for proper execution. Some of these external instructions are called runtime systems or

Online and Diagnostic Tools

SM Version 1.4 204 I4 Series

runtime environments and come as integral parts of the CPU. A runtime system creates a layer over the
operating system (OS) that contains other programs that handle the tasks needed to get the main program
running. These other programs handle tasks such as allocating memory for the main program and scheduling it.

When a program is at the runtime stage, the executable data of the program is loaded into Application Memory,
along with any data that the program references. These may include code that the user did not write but that
works in the background to make the program run. It then makes the hardware run the program.

Many users first encounter the term runtime in the context of a runtime exception (runtime error). This refers to a
problem with the program that keeps it from executing at runtime due to any damaged, missing or incompatible
components or program.

Runtime exceptions can happen for many reasons. The following describes a list of CPU runtime exceptions:

Table 13-1 CPU runtime exceptions

Code Exception Description

R000 Unknown Exception An unknown exception has occurred and the source of this error
cannot be identified. Please call the INTELART support.

R001 Overflow Exception An overflow exception is when the tag type used to store data
was not large enough to hold the data. Some tag types can only
store numbers up to a certain size. An overflow exception will
be produced, for example, if a tag type is SINT and the data to
be stored is greater than 127. Also, an invalid cast exception is

considered as an overflow exception.

R002 Invalid Type Exception The Invalid Type Exception represents an error when an
operation could not be performed, typically (but not exclusively)
when a value is not of the expected type. An Invalid Type
Exception may be thrown when: an operand or argument
passed to a function or an instruction is incompatible with the
type expected by that operator or function. For example, using a
VAR_MOVE to pass a DATE to an INT tag will produce an
invalid type exception. A null reference exception also is

considered as an invalid type exception.

R003 Invalid Name Exception Invalid Name Exception is a kind of error that occurs when
executing a function, tag or user data type that have been used
in the code without any previous Declaration. When the CPU
cannot identify the global or a local name, it produces an Invalid

Name Exception.

R004 OS Exception OS Exception is a built-in exception in CPU which is raised
when an OS specific system function returns a system-related
error, including I/O failures such as “file not found” or “memory
failure”.

R005 Out of Memory Exception An Out of Memory Exception is raised when an operation fills all
the available memory in the CPU. One of the most obvious
reasons causing this issue is the complexity of functions
(function blocks) call tree or lots of programming instances.

R006 Invalid Value Exception An Invalid Value Exception is raised when a user gives an
invalid value to a function but is of a valid argument. It usually
occurs in operations that will require a certain kind of value,
even when the value is the correct argument.

R007 Index Out of Range Exception Index Out of Range Exception is an error that occurs when we
try to access an element from an array from an index that is not
present in the array. For example, in an array of 10 elements,
the index is in the range 0 to 9. If a try to access an element at
index 10 or 11 or more, it will cause the CPU to produce an
Index Out of Range Exception.

R008 Invalid Program Exception Invalid Program Exception is an error that occurs when we try to
access an element from another element such as a function
block or a user data type. For example, in a function block
contains 2 elements 'Tag1' and 'Tag2', If a try to access an
element with name 'Tag3', it will cause the CPU to produce an

Invalid Program Exception.

Online and Diagnostic Tools

SM Version 1.4 205 I4 Series

TIP

When the
CPU
enters a runtime exception or an emergency stop state, Intelart Studio turns the status bar red. By clicking on
the “More Detail” button, the Intelart Studio will navigate you to the source of exception.

11. CPU registers

A CPU register is one of a small set of data holding places that are part of the CPU management system. CPU
registers is predefined in another memory area called “Special Memory” (S). You can access this area of memory
like other memory areas and use tags predefined in this area.

TIP

An external tag table named “CPU_Registers” generates by Intelart
Studio automatically when you add a new device to your project.

Table 13-2 CPU registers list

Name Data type Address Description

spDevice_ID UInt %SW0 Device identification

spHW_VER UInt %SW2 Hardware version

spFW_VER UInt %SW4 Software version

spSERIAL_NUMBER ULInt %S8.0 Device serial number

spTIMESTAMP DateTime %SD16 Current timestamp

spUPTIME Time %SD20 Device uptime

spBAT_VOLTAGE UInt %SW24 Backup battery voltage

spYEAR USInt %SB26 Year component of the current date

spMONTH USInt %SB27 Month component of the current date

spDAY USInt %SB28 Day component of the current date

spHOUR USInt %SB29 Hour component of the current date

spMINUTE USInt %SB30 Minute component of the current date

spSECOND USInt %SB31 Second component of the current date

spWEEKDAY USInt %SB32 Weekday component of the current date

spOVERFLOW Bool %S40.0 Overflow occured

spDIV_BY_ZO Bool %S40.1 Divide by zero occured

spIO_ERR Bool %S40.2 I/O error state

spTYPE_ERR Bool %S40.3 Type error state

spFLASH_STT Bool %S40.4 status of load memory

spCOLD_STRT Bool %S41.0 Cold start mode

spEMG_STOP Bool %S41.1 Emergency stop state

spRUN_MOD Bool %S41.2 CPU run mode

Remarks Form
Your comments and recommendations will help us to improve the quality and usefulness of our publications.
Please take the first available opportunity to fill out this questionnaire and send it to INTELART.

Please give each of the following questions your own personal mark within a range from 1 (very good) to 5 (very
poor).

1. Do the contents meet your requirements?

2. Is the information you need easy to find?

3. Is the text easy to understand?

4. Does the level of technical detail meet your requirements?

5. Please rate the quality of the graphics and tables.

Additional comments:

NOTICE

Contents of this publication may change without prior notice.

	1 Product Overview
	1. I4 PLC
	2. I4 PLC Expansion Modules
	3. Intelart Studio Programming Package
	3.1 Computer Requirements
	3.2 Installing Intelart Studio

	4. Communications Options

	2 Getting Started
	1. Connecting the I4 PLC
	1.1 Connecting Power to the I4 PLC
	1.2 Connecting the Programming Cable
	1.3 Starting Intelart Studio
	1.4 Establishing Communications with the I4 PLC

	2. Creating a Sample Program
	2.1 Opening the Program Editor
	2.2 How to Program
	2.3 Saving the Sample Project

	3. Downloading the Sample Program
	4. Placing the I4 PLC in RUN Mode
	5. Easy-to-use tools
	5.1 Inserting instructions into your user program
	5.2 Inserting Instructions from the “Quick Access” Toolbar
	5.3 Adding inputs or outputs to a LAD or FBD instruction
	5.4 Selecting a version for an instruction
	5.5 Modifying the appearance and configuration of Intelart Studio
	5.6 Changing the operating mode of the CPU
	5.7 Modifying the Hardware Configuration of CPU and Expansion Modules
	5.8 Mapping Module Tags
	5.9 Importing license files

	3 Installing the I4 PLC
	1. Guidelines for Installing I4 PLC Devices
	1.1 Separate the I4 PLC Devices from Heat, High Voltage, and Electrical Noise
	1.2 Provide Adequate Clearance for Cooling and Wiring

	2. Installing and removing the I4 PLC Modules
	2.1 Prerequisites
	2.2 Mounting Dimensions
	2.3 Installing a CPU or Expansion Module
	2.4 Removing a CPU or Expansion Module

	3. Guidelines for Grounding and Wiring
	3.1 Prerequisites
	3.2 Guidelines for Isolation
	3.3 Guidelines for Grounding the I4 PLC
	3.4 Guidelines for Wiring the I4 PLC
	3.5 Guidelines for Inductive Loads
	3.6 Guidelines for Lamp Loads

	4 PLC Concepts
	1. Execution of the user program
	1.1 Operating modes of the CPU
	1.2 Processing the scan cycle in RUN mode
	1.3 Organization blocks (OBs)
	1.4 CPU memory
	1.4.1 Retentive memory

	1.5 Time of day clock
	1.6 Configuring the outputs on a RUN-to-STOP transition

	2. Data storage, memory areas, I/O and addressing
	2.1 Accessing the data of the I4 PLC
	2.1.1 Accessing the data in the memory areas of the CPU

	2.2 Configuring the I/O in the CPU and I/O modules

	3. Processing of analog values
	4. Data types
	4.1 Bool, Byte, Word, DWord and LWord data types
	4.2 Integer data types
	4.3 Floating-point real data types
	4.4 Time and Date data types
	4.4.1 Time
	4.4.2 Date
	4.4.3 TOD
	4.4.4 DT

	4.5 Character and String data types
	4.5.1 Char
	4.5.2 String

	4.6 Array data type
	4.7 Data structure data type
	4.8 User data type
	4.9 Pointer data types
	4.9.1 "Any" pointer data type
	4.9.2 "Variant" pointer data type

	5 Device Configuration
	1. Inserting a CPU
	2. Adding modules to the configuration
	3. Configuring the operation of the CPU
	4. Configuring the parameters of the modules
	4.1 Assigning Internet Protocol (IP) addresses
	4.1.1 Assigning IP addresses to programming and network devices
	4.1.2 Checking the IP address of your programming device
	4.1.3 Modifying an IP address to a CPU online
	4.1.4 Configuring an IP address for a CPU in your project

	6 Programming Concepts
	1. Guidelines for designing a PLC system
	2. Structuring your user program
	2.1 Choosing the type of structure for your user program

	3. Using blocks to structure your program
	3.1 Organization block (OB)
	3.1.1 Creating an additional OB within a class of OB
	3.1.2 Configuring the operation of an OB

	3.2 Function (FC)
	3.3 Function block (FB)
	3.3.1 Reusable code blocks with associated memory
	3.3.2 Assigning the start value in the instance
	3.3.3 Using a single FB with multiple instances
	3.3.4 Creating reusable code blocks

	4. Understanding data consistency
	5. Programming language
	5.1 Ladder logic (LAD)
	5.2 Function Block Diagram (FBD)
	5.3 EN and ENO for LAD and FBD
	5.3.1 Determining "power flow" (EN and ENO) for an instruction

	6. Protection
	6.1 Access protection for the CPU
	6.1.1 Going online to a protected CPU

	6.2 Program blocks protection
	6.3 Copy protection
	6.4 Downloading a compiler binary output file

	7. Downloading the elements of your program
	7.1 Transfer Program to SD Card

	8. Uploading from the CPU
	9. Monitoring and testing the program
	9.1 Monitor and modify data in the CPU
	9.2 Watch and force list
	9.3 Cross reference to show usage
	9.4 Call structure to examine the calling hierarchy

	7 Basic Instructions
	1. Bit logic
	1.1 Bit logic contacts and coils
	1.1.1 LAD contacts

	1.2 Set and reset instructions
	1.3 Positive and negative edge instructions

	2. Word logic operations
	2.1 AND, OR, and XOR instructions
	2.2 Invert instruction
	2.3 Shift and Rotate
	2.3.1 Shift instructions

	2.4 Rotate instructions

	3. Comparison
	3.1 Compare
	3.2 In-range and Out-of-range instructions

	4. Math
	4.1 Add, subtract, multiply and divide instructions
	4.2 Modulo instruction
	General exponentiation instruction
	4.3 Absolute value instruction
	4.4 Increment and decrement instructions
	4.5 Floating-point math instructions

	5. Timer and Counter
	5.1 Timers
	5.1.1 Operation of the timers
	5.1.2 Timer programming
	5.1.3 Time data retention after a RUN-STOP-RUN transition or a CPU power cycle
	5.1.4 Assign a global DB to store timer data as retentive data

	5.2 Counters
	5.2.1 Operation of the counters
	5.2.2 Counter data retention after a RUN-STOP-RUN transition or a CPU power cycle
	5.2.3 Assign a global DB to store counter data as retentive data

	6. Moving and conversion
	6.1 Move instructions
	6.2 Accessing data by array indexing
	6.3 Convert instruction
	6.4 BCD conversion instructions
	6.5 Round, ceiling, floor and truncate instructions
	6.6 Swap instruction
	6.7 Serialize instruction
	6.8 Deserialize instruction

	7. Program Control
	7.1 FOR statement
	7.2 WHILE statement
	7.3 IF statement
	7.4 RET execution control instruction

	8. Selection
	8.1 Select
	8.2 Get maximum and minimum
	8.3 Limit instruction
	8.4 Multiplex instruction
	8.5 Check for nullity
	8.6 Check for array
	8.7 Get array length

	9. Time
	9.1 Time add and subtract
	9.2 Time multiplication and division
	9.3 Time of day addition and subtraction time
	9.4 Date addition and subtraction time
	9.5 Date subtraction
	9.6 Time of day subtraction
	9.7 Date and time subtraction
	9.8 Time concatenation

	10. Character and string
	10.1 String data overview
	10.2 String operation instructions
	10.2.1 LEN
	10.2.2 LEFT and RIGHT
	10.2.3 MID
	10.2.4 CONCAT
	10.2.5 INSERT
	10.2.6 DELETE
	10.2.7 REPLACE
	10.2.8 FIND

	8 System Instructions
	1. Memory management
	1.1 RWW_NVMEM instruction

	2. System Time Management
	2.1 GET_SYS_DT instruction
	2.2 SET_SYS_DT instruction
	2.3 SYS_TICK instruction

	3. Comm ports management
	3.1 SET_SYS_IP

	9 Communication Instructions
	1. RS-232 interface
	2. RS-485 interface
	2.1 Bias resistors
	2.2 Termination resistors
	2.3 Shielding and grounding considerations
	2.4 Cable requirements

	3. Controller Area Network (CAN) interface
	4. Ethernet interface
	4.1 Modbus TCP/IP
	4.2 EtherCAT
	4.3 Ethernet/IP
	4.4 PROFINET

	5. Programming instructions
	5.1 Serial
	5.1.1 SERIAL_INIT instruction
	5.1.2 SERIAL_GET_STAT instruction
	5.1.3 SERIAL_READ_BUF instruction
	5.1.4 SERIAL_SEND_BUF instruction

	6. Modbus communication
	6.1 Overview of Modbus RTU and TCP communication
	6.1.1 Modbus function codes
	6.1.2 Modbus memory addresses
	6.1.3 Modbus RTU communication
	6.1.4 Modbus TCP communication
	6.1.5 Modbus RTU instructions in your program
	6.1.6 Modbus TCP instructions in your program

	6.2 Modbus RTU
	6.2.1 MB_SLAVE
	6.2.2 Modbus RTU slave example program
	6.2.3 MB_MASTER
	6.2.4 Modbus RTU master example program

	6.3 Modbus TCP
	6.3.1 MB_SERVER
	6.3.2 MB_SERVER example
	6.3.3 MB_CLIENT
	6.3.4 MB_CLIENT example

	10 IEC 61131-3 Solutions
	1. CMD_MONITOR instruction
	2. STACK_INT FB instruction
	3. LAG1 FB instruction
	4. DELAY FB instruction
	5. AVERAGE FB instruction
	6. INTEGRAL FB instruction
	7. DERIVATIVE FB instruction
	8. HYSTERESIS FB instruction
	9. LIMITS_ALARM FB instruction
	10. ANALOG_MONITOR FB instruction
	11. IEC_PID FB instruction
	12. RAMP FB instruction
	13. TRANSFER FB instruction

	11 Monitor and Control Instructions
	1. Designing Digital Controllers
	1.1 Process Characteristics and Control
	1.1.1 Process Characteristics and the Controller
	1.1.2 Process Analysis
	1.1.3 Type and Characteristics of the Process

	1.2 Feedforward Control
	1.3 Multi-Loop Controls
	1.3.1 Processes with Inter-dependent Process Variables

	1.4 Structure and Mode of Operation of the PID Control
	1.4.1 Control Algorithm and Conventional Control
	1.4.2 The Functions of the “Standard PID Control”

	1.5 Signal Processing in the Setpoint Branch
	1.6 Signal Processing in the PID Controller

	2. Configuring and Starting the Standard PID Control
	2.1 Defining the Control Task
	2.2 Type of Actuator
	2.3 Generating the Control Project Configuration
	2.4 The Sampling Time CYCLE
	2.4.1 The Sampling Time: CYCLE
	2.4.2 Equivalent System Time Constant
	2.4.3 Sampling Time Estimate
	2.4.4 Rule of Thumb for Selecting the Sampling time

	2.5 How the Standard PID Control is Called
	2.6 Range of Values and Signal Adaptation (Normalization)
	2.6.1 Internal Numerical Representation
	2.6.2 Signal Adaptation

	3. Signal Processing in the Setpoint/Process Variable Channels and PID Controller Functions
	3.1 Average Value Generator (AVG_GEN)
	3.2 Rate of Change Alarm Generator (CHG_ALM)
	3.3 Cycle Time Calculator (CYC_TM)
	3.4 Filtering Signal Function (DEADBAND)
	3.5 Unsigned Int to Signed Int Encoder (ENCODER)
	3.6 First In First Out (FIFO)
	3.7 Asymmetric Hysteresis Generator (HYST_GEN)
	3.8 Damping the Process Variable (LAG1_GEN)
	3.9 Monitoring a Process Variable Limits (LIM_ALM)
	3.10 Loop Scheduler (LP_SCHED)
	3.11 Manual Value Generator (MAN_GEN)
	3.12 Normalize (NORM)
	3.13 Standard PID (PID_STD)
	3.13.1 Block Diagram of the Standard Controller
	3.13.2 Complete Restart/Restart
	3.13.3 Integral action (INT)
	3.13.4 Manual Mode and Changing Modes
	3.13.5 Automatic Mode
	3.13.6 Limiting the Absolute Value of the Manipulated
	3.13.7 Control Algorithm and Controller Structure
	3.13.8 Defining the Controller Structure
	3.13.9 P Controller
	3.13.10 PI Control
	3.13.11 PD Controller
	3.13.12 PID Controller
	3.13.13 Using and Assigning Parameters to the PID Controller
	3.13.14 Permitted Ranges for TI and CYCLE
	3.13.15 Permitted Ranges for TD and CYCLE
	3.13.16 Windup

	3.14 PWM Signal Generator (PWM_GEN)
	3.15 PID Tuner by Relay Method (RELAY_TUNE)
	3.16 Ramp Soak (RMP_GEN)
	3.16.1 Using the Ramp Soak
	3.16.2 Configuring the Ramp Soak
	3.16.3 Modes of the Ramp Soak
	3.16.4 Activating the Ramp Soak
	3.16.5 Preassigning the Output, Starting the Traveling Curve
	3.16.6 Cyclic Mode On
	3.16.7 Hold Setpoint Value
	3.16.8 Selecting the Time Slice and Time to Continue
	3.16.9 Updating the Total Time and Total Time Remaining

	3.17 Limiting the Rate of Change of a Value (ROC_GEN)
	3.18 Scale (SCALE)
	3.19 Gain Scheduling (SCH_GEN)
	3.20 Scale With Parameters (SCP_NORM)
	3.21 PID Self Tuner (SELF_TUNE)
	3.21.1 Area of Application
	3.21.2 Process Requirements
	3.21.3 Transient Response
	3.21.4 Time Lags
	3.21.5 Linearity and Operating Range
	3.21.6 Monopolar Actuating Signal
	3.21.7 Disturbances in Temperature Processes
	3.21.8 Quality of the Measured Signals
	3.21.9 Process Gain
	3.21.10 Processes with a Control Valve with Integral Action
	3.21.11 Learning Phases

	3.22 Extracting the Square Root Normalization (SQRT_NORM)
	3.23 Stack Collection (STACK)
	3.24 Three Step Signal Generator (THREE_STEP_GEN)
	3.25 Weighing System (WEIGH)

	12 Technology Instructions
	1. Temperature Control
	1.1 Temperature Control by TEMP_CONTROLLER
	1.2 Temperature Control Optimizer (TEMP_OPT)

	13 Online and Diagnostic Tools
	1. Status LEDs
	1.1 Status LEDs on a CPU

	2. Going online and connecting to a CPU
	3. Displaying the status of the CPU
	4. Setting the date and time of day
	5. Displaying or setting CPU configuration
	6. Resetting to factory settings
	6.1 Procedure
	6.2 Result

	7. CPU operator toolbar for the online CPU
	8. Monitoring and modifying values in the CPU
	8.1 Going online to monitor the values in the CPU
	8.2 Displaying status in the program editor
	8.3 Using a watch table to monitor and modify values in the CPU

	9. Recovery from a lost password
	10. Runtime Exceptions
	11. CPU registers

