INTELART

Programmable Logic

Controller
14 Series

System Manual

IEC 61131 Compliant
Version 1.4
07/2020

Release date: 04/2023
Copyright © INTELART 2023
All rights reserved

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded
according to the degree of danger.

indicates that death or severe personal injury will result if proper precautions are not taken.

/\ WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

NOTICE

indicates that an unintended result or situation can occur if the relevant information is not taken into account.

Q TIP

indicates that an additional contextual information about a particular element or subject.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be
used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property
damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific task
in accordance with the relevant documentation, in particular its warning notices and safety instructions.

Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Intelart products

Note the following:

/\ WARNING

Intelart products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended or
approved by Intelart. Proper transport, storage, installation, assembly, commissioning, operation and maintenance
are required to ensure that the products operate safely and without any problems. The permissible ambient
conditions must be complied with. The information in the relevant documentation must be observed.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described.
Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this
publication is reviewed regularly and any necessary corrections are included in subsequent editions.

SM Version 1.4 ii 14 Series

Preface

Purpose of the manual

The 14 PLCs is a line of programmable logic controllers (PLCs) that can control a variety of automation applications.
Compact design, low cost, and a powerful instruction set make the 14 PLC a perfect solution for controlling a wide
variety of applications. The 14 models and the Windows-based programming tool give you the flexibility you need to
solve your automation problems.

This manual provides information about installing and programming the 14 PLC and is designed for engineers,
programmers, installers, and electricians who have a general knowledge of programmable logic controllers.

Required basic knowledge

To understand this manual, it is necessary to have a general knowledge of automation and programmable logic
controllers.

Service and support

In addition to our documentation, we offer our technical expertise on the Internet on the customer support forum
(https://lwww.intelart.ir/forum).

Contact your Intelart distributor or sales office for assistance in answering any technical questions, for training, or for
ordering 14 products. Because your sales representatives are technically trained and have the most specific knowledge
about your operations, process and industry, as well as about the individual Intelart products that you are using, they
can provide the fastest and most efficient answers to any problems you might encounter.

Documentation and information

The 14 PLC system manual provides specific information about the operation, programming and the specifications for
the complete 14 PLC product family.

If you are a first-time user of 14 PLC, you should read the entire 14 Programmable Controller System Manual. If you are
an experienced user, refer to the table of contents or index to find specific information.

The other appendices provide additional reference information, such as descriptions of the error codes, descriptions of
the Special Memory (S) area, part numbers for ordering 14 PLC family equipment.

An Overview of IEC 61131-3

The International Electrotechnical Commission (IEC) is the international body that sets global standards for electrical,
electronic, and other related technologies.

Various region-specific technology certification bodies derive their standards
from IEC. IEC 61131 is the standard for programmable controllers.

It has ten parts covering general information, equipment requirement, user
guidelines, communication protocols, safety, fuzzy control programming, and
many other aspects regarding programmable controllers.

The third part of IEC 61131 defines the programming languages used for
programmable controllers. It was published in December 1993 by IEC, and
the current edition (third edition) was released in 2013.

Before IEC 61131-3, different vendors had various programming languages
and interoperability was nonexistent. An engineer who knew how to program
with one vendor's software had to learn new programming of another vendor
to work with the PLC. The different software life-cycle stages are
specification, design, implementation, testing, installation, and maintenance,
which were heterogeneous for different vendors.

SM Version 1.4 iii 14 Series

IEC 61131-3 defined a minimum set, the basic programming elements, syntactic and semantic rules for a minimum set,
the basic programming elements, syntactic and semantic rules for a programming language used for programmable
controllers. The advantages of IEC 61131-3 are:

e Improved interoperability of programming languages
e Higher programming efficiency

e Reduced errors

e Improved reusability

e Modularization

e Implementation of modern software techniques

e Increased user efficiency

This made IEC 61131-3 widely accepted by users and vendors globally and has become the standard for programming
and configuring industrial control devices. The standards are also evolving according to the needs of the industry and
inefficiencies in earlier editions. A noted enhancement in the subsequent editions is the addition and improvement of
support for Object-Oriented Programming (OOP), including classes, methods, interfaces, and namespaces.

IEC 61131-3 defines the basic structure and elements of all programming languages for programming controllers. This
allows PLCs to be programmed using multiple languages. Note that software used to program PLCs from one vendor
cannot typically be used to program PLCs from another vendor.

This is due to the differences in addressing schemes, task scan rates, array sizes, string lengths, and file formats.
Users can utilize the five programming languages to program PLCs. The features of IEC 61131-3 that aids this are
mentioned below.

Standard Data Types

IEC defined a standard set of data types with uniform across all the programming software compliant with IEC 61131-
3. The standard has defined how to interpret the contents of the variable. Only one type of operation is allowed for a
particular data type. For example, mathematical operations can be done only on numerical data types and not on bit-
patterns.

Derived Data Types

High-level, PC-oriented programming languages offer derived data types that users can define according to their
needs. This gives more flexibility and versatility to programming languages. IEC 61131-3 supports derived data types
like Fields and structures that allow for efficient organization and grouping of data. This allows for the use of data in a
secure manner.

Program Organization Units (POU)

Functions and function blocks are the most common POUs for programming. Recurrent tasks can be bundled as
functions or function blocks that can be called when they are required.

This division of sub-tasks of the whole program makes programming and verifying written programs easier. It will be
legible and coherent, opposed to the mess when such POUs are not available while programming.

Data Encapsulation

The third edition of IEC 61131-3 supports object-oriented programming. This is enabled by the capability of data
encapsulation. It is the practice of bundling data with the functions that use the data. Classes are the most common
use case of data encapsulation, widely used in high-level object-oriented computer languages.

With this, all the POUs have only local data and cannot be manipulated by other parts of the program. This avoids
overwriting data errors.

Data-Exchange Interfaces

It's necessary to have POUs and data encapsulation to have a robust programming language and define the data-
exchange interfaces. The data types and the scope of each data type in different POUs must be well defined. IEC
61131-3 has standardized the data exchange interfaces for programming languages for logic controllers.

Symbolic Functions & Function Blocks

SM Version 1.4 iv 14 Series

Using the IEC 61131-3 standards, programs can be written in a way that is address and module independent. This
enables writing functions and function blocks that are independent of target systems. The logic takes precedence over
the specific implementation. This allows users to write reusable programs that can be appropriated for various
systems.

Standard Syntax and Semantics

Syntaxes and semantics make up a high-level computer language. IEC 61131-3 has standardized them for all
programmable controller languages. The commands and instructions would be the same across various programming
languages.

This reduces the training required by engineers if they have to work with PLCs from multiple vendors. This additional
feature enhances the reusability of the programs.

Language Extensions

IEC 61131-3 has no intention of reducing the development of new PLC languages but only to standardize the
languages. The standard allows proprietary function blocks to be programmed in non-IEC 61131-3 languages such as
C++.

There are PLC vendors and dedicated software vendors that write reusable programs in higher-level PC-oriented
languages. These are then ported to use with a specific device. PLC vendors can also enhance and provide
extensions to the programming languages that are IEC 61131-3 compliant.

All these features help with using multiple languages for the same PLC according to the comfort of the user.

This standard helped unify, to an extent, the heterogeneous and fragmented programming landscape for PLCs.

Q TIP

All 14 PLCs and their programming software is designed based on IEC61131 standard. For more information you
can refer the IEC 6131-3 documentation.

SM Version 1.4 \Y; 14 Series

Table of Contents

L1 PrOUUCE OVEIVIEW.ueiiiiiitit ettt ettt ettt eb ettt b e ekt e bt e e ket e b e e e b et ettt e be e et e e e b et e b e e e be e e b e e e ebe e e nbeeenbeeenes 1
1. TP PP PP UPPTPPPPPTRN 2
2. 14 PLC EXPANSION MOAUIES....... .ttt oottt e e e e e ettt e e e e e e e sntte et e e e e e e e nsbbeeeaaeeeaanssneeaaeeeaanns 3
3. Intelart Studio Programming Package

3.1 COMPULET REGUIFEMENTS ...iiiiiiiiiiiieeeeeiiiteeiee e e e e ettt eeee e e s e saeeeeaaaaeaaaneteeeeaaeeaassbaeeeaaeaeaanssseeeaaeeesansnsneeaaaeeaannes
3.2 INSEAllING INTEIAIT STUIOeeeiiieee ettt et e et e e s bt e e s b e e e st e e e s nneeeennnreenn 4
4, COMMUNICATIONS OPTIONSuviiiiiie e e ittt e e e e e e et e e e e e e ss e e e e e e e et atbaaeeeaeeesataaeseeeeeesaasassseeaeeesaassssseeeeeesaannsaeeaaaeas 4

P C 1= 1 1] [0 RS - Ut (=T B UP S S P PPRPR 5

1. (0fe] o e [=Twi g To IRt LT Vo X SRR 6
1.1 Connecting POWET 0 thE 14 PLC ..ottt ettt e e e e et e e e e e e e et e e e e e e e e s saabbareeaeeessnaneees 6
1.2 Connecting the Programming CabIe...........cooi ittt e e e e e e e e e e e e e e st e e e e e e e e s annnnes 6
1.3 Starting INEIAIt STUTIOcceiirieeiiiii it e et e e e s e e e s r e e s s e e s snnr e e e anne e e e anes 6
1.4 Establishing Communications With the 14 PLCcueii it 7

2. Creating @ SAMPIE PrOGIAIMoo..iiiiiiiie ettt e e bt e e et e e s b e e e e e s be e e e ab e e e e s abreeeeannreeenas 8
2.1 Opening the Program EGitOrouiie i iiiie ettt e ettt e st e e et ee s snteeeeseaeeeeanteeeeanneeeesnnneeas 10
b o (o)1 (o I e (oo | = 1 PO UUPOPPPPPRRPTN 10
2.3 SaVING the SAMPIE PrOJECE ... eiiieiiiiie ettt ettt e st e e ettt e e s et e e e s rbae e e e ante e e e ennneeeenneeas 11

3. Downloading the SAMPIE PTrOGIaMouiiiiiiiiie ettt e et e e s tb e e s et e e sbeeeeaasbeeessnneeeessnbeeeeanereeeans 12

4. Placing the 14 PLC iN RUN MOGE.........ocoiiiiiiiiiit ittt e e ab et e s e e s nnne e e e annreeeaas 12

5. o 1S (o R U T (0o PP PP PP UUP PP PPPPPPPPPRI

5.1 Inserting instructions into your user program

5.2 Inserting Instructions from the “Quick ACCESS” TOOIDANoiiiiiiiiiii e 14
5.3 Adding inputs or outputs to & LAD Or FBD INSIIUCHIONccoiuiiiiiiiiieiiiiie et 14
5.4 Selecting a version for an INSIIUCTIONc.iii ittt e e e e e e e e e e s aibbe e eeeeeeanes 15
5.5 Modifying the appearance and configuration of Intelart StUIOooeiiiiiiiiiiiii s 16
5.6 Changing the operating Mode Of the CPU ..o 16
5.7 Modifying the Hardware Configuration of CPU and Expansion Modules.............cccccooiiiiiiiiie i 17
Lo S I Y F= Vo] o g To T (oo [0 [T Ir= To OSSO PP PPPPPRPTI 17
5.9 IMPOrtiNg ICENSE flES ...ttt e e s e e ettt e s e e nne s 18
3 INSEAIING ThE 14 PLC ...ttt e et e et e oot e oo bt e e st e e e e s b et e e e b b et e e anbe e e e anbn e e e e nbe e e e nnnes 20
1. Guidelines for INStalliNg 14 PLC DEVICESeiiiiiiiieiiiiie ettt ettt et e e ab e s e e nneees 21
1.1 Separate the 14 PLC Devices from Heat, High Voltage, and Electrical NOIS€.............cccvviiiiiiiiiiiiiiiieceeee 21
1.2 Provide Adequate Clearance for Cooling and WIiriNgooiiiiiiiiiiieiee et 21
2. Installing and removing the 14 PLC MOAUIES..............uueiiiiei ettt e e e e e e eea e e e e 22
b R o (=T =10 (U] (S PO UUTUUPPPRRTT

2.2 Mounting Dimensions

2.3 Installing a CPU or EXPanSion MOGUIEueiiiiiiiiiiiie ettt e e 23
2.4 Removing a CPU or EXPanSIion MOGUIEcooiiiiiiiiii ettt 23
3. Guidelines for Grounding @nd WITINGouueeeiiiiieeiie ettt e s e e et e e e abb e e s nnn e e e s nneeas 24
T R o (=T = To (U] (PP UPPRSUTPUPERRT 24
I €10 1o (=111 g T3 (o] g To] - U4 o] o PRSPPI 24
3.3 Guidelines for Grounding the 14 PLC ittt e e e e e e s ibb e e e e e e e s anbrreeeaeaeeanes 24
3.4 Guidelines for WIriNG the 14 PLC ...ttt e e ettt e e e e e s e tbb e e e e e e e s e annbbneeaeeeeanes 25

SM Version 1.4 vi 14 Series

3.
4.

p 0D PR

6.

T T €10 o L= [T o oY RR (o gl [o [N o3 11 V73 o =T 25

3.6 GUIdENNES TOr LAMP LOAASuuiiiiiee ittt e e e e e ettt e e e e e et e e e e s e et e e e e e e e e s ssbbaeeeaeeesasbbaseeeeeesaassssaeeeeeesannes 26
[O @ o =T o £ PRPIN 28
EXECULION Of the USEI PIrOGIAIMttt e e e e e e e e ettt e e e e e e s e ab b e e e eeee e s e sabtreeeaeeseanstbnneeaeas 28
1.1 Operating MOAES OFf tNE CPU.......c.iiiiiiiii it e e e e s e b et e s e e e e anr e e e 30
1.2 Processing the scan cycle in RUN MOGE.........coiiiiiiiiiieiiie ettt e e 31
1.3 Organization DIOCKS (OBS)........ciiiiiiieiiiiieiiie ettt ettt e et e e s e e e as e e e s b e e s e e e e annreeena 32
N O e U I 01T 1 4[] YT P TP T PP P TP PPPPRPRTRPOTRPIR 34
S 10 L= N0) o -\ Vo (o Lo PP UPP OSSP 34
1.6 Configuring the outputs on a RUN-to-STOP transition
Data storage, memory areas, /O and addreSSiNgc.uveiiieiiiiiiiiiieee e e e e
2.1 Accessing the data 0f the 14 PLC ...t e e e e e e e e s et e e e e e e s eeabareeeeeeseaans 36
2.2 Configuring the I/O in the CPU and I/O MOUUIESceiiiiiiiieiiiee et 38
Processing Of @NAl0QG VAIUEScoiiiiiiiiiie ettt ettt et e e sttt e e nb e e e s s e e e e annneeeaa 40
(D= 1= A L= TSP TR PR 41
4.1 Bool, Byte, Word, DWord and LWOrd data tyPeS........uueiiieeeiiiiiiiiiee e eeciiieeee e e eiieeeee e e e st ee e e e e e enneneeeaae s 42
N |11 (=To =T g F= L= T Y 1= SRR 42
4.3 Floating-point real dAta TYPESeieiiiiieeiiiie ettt e e st e e st e e st e e e st e e e ettt e e s nreeeeatbeeeaaneeeeennnes 43
N 1 [T (o I B o (i - L= T Y o1 SRR 43
4.5 Character and StriNG A TYPESeeiiuuiie it ittt ee e st e e et e e st eeeanbe e e e ateeeessneeeeeantbeeesaneeeeennnes 44
I N g - (Ao P = B 1 oS O TP P PRSP PUPRR 46
4.7 Data SIIUCIUIE JALA LY ...ueeiiieiteiee ittt ettt et et e e ettt e e b et e e aa bt e e et e et e e bn e e e e asbr e e e annn e e e e nnes 46
N U 1= oo F= - I 1Y o= O PO TP P PP PPPRR 46
e I o111 (=T e Fo = B A o 1T P TSP P PRSP PPPRR 47
(DoAY ot @fe] o1 T U] £= 1o o HAU TP P TP PP PPPP 49
Ta 11T gl gl = W O = O PP U PP OPPPPPRPPRN 51
Adding modules t0 the CONFIGUIALIONuuiiiiie e e e e e e e e e s e e e e e e e anes 52
Configuring the operation Of the CPU ...t e e e e e ab e e e e e e e e sanenees 52
Configuring the parameters of the MOUIESoiiiii i e 53
4.1 Assigning Internet ProtoCol (IP) 8AAIESSESveiiiiiiiiieiiiii ettt 54
ProgrammiNg COMNCEPLSeeeiuieieiitii ettt ettt e e s e e e e b bt e e aa bt e e s be e e e ek b et e e e st et e e sa b et e e abbe e e s anb e e e e snbneeeanneeeenanes 57
Guidelines for designing @ PLC SYSIEMuuiiiiiiiieiiiie ettt ettt e e e e e ab e e s e e e s nneees 58
SEIUCLUNING YOUT USEE PIOGIAIT «...uttiteiaiteeeesiteeee ettt e sasteeeesasseeeaasse e e s astee e e sss s e e e e asbe e e e aabe e e e e nbe e e e anbe e e e anbe e e e nnneeeesnneees 59
2.1 Choosing the type of structure for YOUr USEr PrOGIAMuveeiieeeiiiiiiieieee e e e ettt e e e e e e s eibeeeeeee e e s ssbnbeeeeeeeeanes 59
UsiNg bIOCKS tO StrUCTUIE YOUE PrOGIAM ...cuiiiiiiiiee e ettt e e e e ettt e e e e ettt e e e e e s et b b et e e e e e e s asbbbreeeaeesaannsbreeeeeeas 60
3.1 Organization DIOCK (OB) ...ttt e oot e e e e e et e e e e e e s e bbb e e e e e e e e e e abreeeeaeeeaaaa 61
R T U 0 Tox (o] o T) T PP UPTUUTUPERRTN 62
TR B ¥ o Tox 1T gl o] o Tod [(o = O PSP PO PP PPPRPPI 62
Understanding dat@ CONSISENCYueiiiiirieiiiiie ettt ettt e et e e et e e e st e e e e bt et e s aabb e e s nnbeeeeanbreeeans 64
Programming [ANGUAGE.........ccoiiiii ittt e et e s bt e e e bt e e e ab et e e s bt e e e bt e e e e anbe e e e abbe e e e anbreeeaa 64
L A - o [0 T o o Yo ol (Y) T PSP PO PP P R OPPRPPPI

5.2 Function Block Diagram (FBD)
5.3 EN and ENO for LAD and FBD

[=d (0] (=Tex (o] o TR 66

SM Version 1.4 vii 14 Series

6.1 ACCESS ProteCtion fOr the CPU........iii ittt e e e e e s et e e e e e e s et bbr e e e e e e e s sasbsaeaeeeesaaaes 66

6.2 Program BIOCKS PrOtECHONuiiiiii e e e et e e e e e s ettt e e e e e e e s stbbtaeeeeeesaassbsaeeeeeesanaes 67
(S T 0o o) VA o] (o) (=T o i[o o KPP PP S UOPPPRRPN 67
6.4 Downloading a compiler binary OULPUL fil€ccuuiiiiiii i e e 68
7. Downloading the elements Of YOUI PrOGIamcooiiiiiiiiieeiiie e e e e e e e 68
7.1 Transfer Program t0 SD Card.........oua i iiuuuiiiiea ettt e e e e ettt e e e e e s e e tba e eeeaeeaaasbaeeeeaeeasasnseeeaaaeasaannssnaeaaesannns 69
8. UpIoading from the CPU ..ottt e e s e e e bt e s asne e e e s nneeeeannreenaa 69
9. Monitoring and teStiNg the PrOGIAMcuiiiiiiiii ettt e s e e st et e s s e e e s nnr e e e e annreeeaas 69
9.1 Monitor and modify data in the CPUooiii i e e e e s e e e e e s eebba e e e e e s anaas 69
9.2 WaALCH QN FOICE [ISt.....eeeiiiiiieiee ettt ettt et ne e sbn e e bt e sbneenine e

9.3 Cross reference to show usage

9.4 Call structure to examine the calling hIErarChycoooiiiiiiiii i 70

A =T T ol [1 0 o) o] OO PP U PUPP 71
1. 2] (oo [P PP PP UP PP PPPRPPPPRI 74
1.1 Bit10giC CONTACES ANA COIISveeieiiiiieiitiie ettt ettt e et e s e e e as bt e e ebb e e e s nsne e e e anbreeeaas 74
1.2 Set and reSEEINSIIUCTIONSviiiiiiiit ettt ettt et e st e e et et e s bb e e e aa bt e e sbbe e e s nsbeeeeanbreeena 76
1.3 Positive and negative €dge INSITUCLIONSoieiiiiiiiiiiee it e ettt et e e e st e e s b e e e snteeessnseeeesnneeeesnneeeeans 77
P22 o T o (oo odo) o<1 =11 o] o F- PSR 79
2.1 AND, OR, Qnd XOR INSEIUCHIONSiiiiiieitee e ee ettt e e e et e e e e et e et se e e e e ee st e eeseses st e eeseesssaan e eeeseessnsnns 79
2.2 INVEITINSIIUCTION ...ttt a e h e a e h e e bt e e bt e e bb e e s b bt e bt e s b e e b st e sbn e e bt e nineenine e 79
2.3 ShIft AN ROALIEcciiiiiieee ettt e bt et e e s bt e e e bt et e e s bt e e s ba e e e e b b e e e e ane e e e nre s 80
2.4 ROTAIE INSIIUCTIONStteeeeitiee ettt ettt ettt e ekt e et et e e sa bt e e ek bt oo as b et e e st et e e e b b et e e asb e e e e s sbne e e e bbe e e e ennneeesnneees 80
3. (0] 171 oF= 11T] o FEU T TP TP PP PPPPPPPI 81
I T R 00 4o o T 1 PSP TP PP 81
3.2 In-range and Out-Of-range INSIIUCTIONScouiiiiiiiiie ettt e s 82
4. /= U1 PSP PUP PP OPPPPPPP 82
4.1 Add, subtract, multiply and divide INSIIUCTIONSc.ueuiiiiiie e e s 82
S /(o To [0 (oI o I3 1 Do 1o OO UR R PPPPR 83
General eXpoNentiation INSTFUCTION.cii ittt e ettt e e e e e bbbt e e e e e s bbb te e e e e e e s aabbbeeeeeeeesaaabnbneeeeeesaanns 84
4.3 ADSOIULE VAIUE INSTIUCTION.eiiiiiiieiiti ettt ettt e s b e e e ea bt e e et e et e e ss et e e st e e e nnee e e e nnnes 84
4.4 Increment and deCreMENT INSIIUCTIONSuviiiiiiee ittt e et e e anee e 84
4.5 Floating-point Math INSIIUCHIONSouviiiiiiii et e e s e e e et e e e s s e e 85
5. TIMEE ANA COUNLET ...ttt h e e ettt e o b et e e ah bt e e e b et e e e b et e e bbbt e e et et e e s bbb e e abbe e e e nnnneeesnneeas 85
LT O 0 01T £ OO PP PPRRT 85
L O o U 31 (=T £ PO OPTUP 89
6. (oY TaTo IF= T o [olo] 0 1VZ=T =] To] o PRSPPI 92
6.1 IMOVE INSIIUCTIONS. ... teie ettt et e ettt e e et e e ekt e e st e e s Rt e e ek et e e sre e e e s nnne e e e sne e e e annn e e e s nneees 92
6.2 Accessing data by array INAEXINGccoouiiiiiiiie et 93
6.3 CONVEIT INSIIUCTION ... eiiiiitite ettt ettt e e bt e st e e s b et e e e bt e e e e st et e e s aba e e e e bbe e e e annn e e e s bneees 93
6.4 BCD CONVEISION INSIIUCHIONS.eeiiitiiie ittt ettt b e e e ekt e st e e e e s bb e e e e anbr e e e snbe e e e s bneees 94

6.5 Round, ceiling, floor and truncate instructions

6.6 SWAP INSIIUCTION ...ttt ettt e ettt e e e e e e b b bttt e e e e e s s a bbb et e e e e e e e an bt beeeeeeeesansbbeeeeeeeesannbnneeeaaaesaann
6.7 SEHANIZE INSIIUCTION ...eeeiiiii ittt ettt e e e e et e e e e e e e e e ea e e eeeee e e st ba e eeeeseessaanaeeeeesesstaneeeeeeesnsnns 96
6.8 DESEIIAlIZE INSITUCTION .ouvuiiiieiieiiiiee e et e e e e ettt e et e e e e e et e e e e e e e e e et ta e eeeeeeesbaaaeeeeesasaaanaeeeeeeenssans 96

SM Version 1.4 viii 14 Series

7. [oTo 1= 10 0 I @10]] (o | FO P PEPP TSP 97
A A O T =1 r= =T 1 1= o | PP PPRT 97
7.2 WHILE SEAIEMENTiiiiiiiiiie et e e st e e s e e e s s b b e e s st b e e e s e e e e s nnee s 98
AR T | =11 (=10 1T o OO P PO PPRRT 98
7.4 RET eXecution CONTrOl INSIIUCTIONcciiiiiiiiiiie ettt e e e e nneees 99

8. =] =T (T o I PSP PPPPRTPP 100
N A 1= [T ox AP OSSP PPPRR 100
8.2 Get maximum aNd MINIMUIMoiiiiiee e e e e e st e s sre e e e s b et e e abre e e ssne e e e annreeesnneeeennnes 101
8.3 LIMIEINSIIUCTION. ...ttt ettt a e bt b e e et e et e s b bt e sen e e sb e e ean e e nen e e naneeanes
8.4 Multiplex instruction
T I O T=Tod (o] g [V 11O EPR PR
I T O (=Tt (o] =1 -\ YOO PT PP
o T A T o= 14 =\ Y (=] o |1 o TP 103

9. LI LI T T PP P PP TPPPRN 103
9.1 Time @dd @Nd SUDIIACT.eiiiiiiiie ittt et e e et e e s s et e b e e e 103
9.2 Time multiplication @Nd QIVISIONeeiiiiiiiiiiie et s et e s e 104
9.3 Time of day addition and SUDLrACION tIMEceiiiiiiiiiie e s e e e e snee e e e eneee 104
9.4 Date addition and SUDIFACHON TIMEciiuiiiiiiiiie et 105
9.5 DAL SUDITACTION ...eeeiiii ettt b e h e b e b e e bt e e bt e e hb e e s bt e et nh e nan e et 105
9.6 Time Of dAy SUBLIACHIONeeiiiiiiie ettt e e et e e e ettt e e e nte e e e anaeeeeenneeeeenees 106
9.7 Date and tiMe SUDIITACTION.........uuiieiiiiiee ettt ettt ettt e st e e et e e e et e e e s nsne e e e abb e e e snneeeennnes 106
9.8 TIME CONCALENALIONeieiiiiie ettt ettt et e e e h bt e e et et e e e b et e e aa b e e e e e b n et e e nne e e e anbr e e e annne e e e nnes 107

O O F= T = o) (=T g T (o IS £ o o RO PP P P PP PUPPPPPPI 107
10.1 SHING HALA OVEIVIEW ...ttt ettt e st e e ettt e e b e e e e ah b et e e et e et e e nb e e e e asbe e e e annreeesnnes 107
10.2 StriNG OPEratioN INSIIUCHIONSciuiiiiiiiii ettt e e et e s b e e e st e e e snre e e s nanes 107

8 SYSIEIM INSIIUCTIONS.eii ittt e ettt e oottt et e e e ook bbbttt e e e e e s ab b e et e e e e e e e ab bbb et e e e e e e anbbbbeeeeeeeseannnbbeeeeaens 113

1. MEMOTY MIBINBIGEIMIEINT ...ttt bbbttt s sttt s e et s e nen e 114
1.1 RWW _NVMEM INSITUCTION. .. uuuttttitiiititititasisesesauesssaseseaesssesesesesssseesssssesssssesssssssssssssssssssssssssssssssssssssssnsnsnnnnnes 114

2. SYSIEM TIME MBNAGEIMENTeeiiieiiiieit ettt e e e e e s et e e e e e e e s e bbb e et e e e e s aasnbb b et e e e e e e anbbaeeeeeeeeannnnnees 114
2.1 GET_SYS_ DT INSIUCHONeiiiitiiieiitiee ettt ettt saab et e e et e e e et e e e s s e e e e sbb e e e snne e e e nnnes 114
2.2 SET_SYS_DT INSIUCHION ...etiiitiiieiitite ettt ettt et e e et e e b et e e aa bt e e et e e e s eane e e e anbb e e e snneeeennnes 115
2.3 SYS_TICK INSIUCHION ...ttt ettt ettt e et e ettt e e b et e e e h b e e e e et et e e e sbe e e e asbr e e e annneeesnnes 115

3. COMM POIS MANBGEMIENTevieiiee ittt e e et e e e e e e r e e e e e e s e e e te e e s e nr e et eeeeaasnrr e e et e e e s e snnnrneeeeeseannnnnnes 115
B ST S Y S P 115

9 CoMMUNICALION INSTIUCTIONS.eiiiiiiii ittt e et e e st e s st e e sbe e e e s nr e e e e nineeeeas 117

1. RS-232 INEITACE ...ttt e et e e et e e et e e e e e e E e e s 118

2. RS-485 INTEITACE ...ttt et e et e e et e e et e e nn e e e e e e et e e e es 118
b N 2 (=TS) (o] £ OO PSP OTP PP PPPRN 118
2.2 TErMINALION FESISIONSeeiutiieeiiieeee ittt ettt ettt ettt e bt e e e aab e e e ea b et e e e ab e e e e ah b e e e e et bt e e e bbe e e e anb b e e e anbneeennnee 118
2.3 Shielding and grounding CONSIAEIALIONSueiiiiiiieiiiii et e e e e e 118
2.4 CADIE FEQUITEIMENTSiiiiiiiie ettt e e a b e e et bt e e e bb e e e e h bt e e eabb e e e e sbe e e e aab b e e e anbneeennnes

3. Controller Area Network (CAN) interface

4. ENEINET INTEITACE. ... ettt e et e s e e st e e et e e s e e e es
o R Y/ [To | o TU S O = | TP EPPPPR 120

SM Version 1.4 iX 14 Series

4.2

4.3

4.4
5.

51
6.

6.1

6.2

6.3

H
© ® N o o s w N O

=
= I i e
’ w N = o

11
1.2
1.3
1.4
15
1.6

2.1
2.2
2.3
2.4
2.5
2.6
3.
3.1
3.2
3.3
3.4
3.5

1 T=T £ 07 L T T T T U PP PP PP P PUR PRI 120
ENEINEYIP ...t ettt e s et e et 120
PROFINET .ttt ettt ettt e e oo ettt e e e e e e st ettt e e oo oo e bbbttt et e e o4 e h bbb bttt e e e e e e bbb e e e e e e e e e nnnbnnees 120
Programming iNSIIUCIONSciiiiiiiiiiie ettt e e e e st e e e e e e s et a e e e e e e s e saaareeaeeeesasabsreeeeaesaaanraeraaeeas 120
1= = PP PR OPPP TR PPPPP ORI 120
MOADUS COMIMUNICALION ...t e et e et e e st e e st e e e b e e e e e e e nannee s 123
Overview of Modbus RTU and TCP COMMUNICALIONeeviiiiiieiiiiieeeiiee e 123
MOADUS RTU ...ttt ettt e ekt e e e s et e e b et e e ea bt e e e b e e e s nr e e e e nsnr e e e nnne e e e nnnes 124
MOADUS TCP ...ttt e et h e s a e e et e e bt e e h bt e e et e e et e et e et e st e e st esne e et e e e ne e e rees
[EC B1131-3 SOIULIOMNS ...ttt ettt ettt eab e s st e et et e e e e et eebe e e e e ere et
CMD_MONITOR instruction
STACK _INT FB INSIIUCTIONuviiiiieiiiiiiiete e e ettt e e e e st e e e e e e sttt e e e e e e s e e sab b e e e e e e e s aasatbaeeeaeesessnsbaaseeeeeesansreeees
[R = T S (U T 1) o PP PP PUPRP PP 136
DELAY FB INSIIUCTIONeeiitiiiiiiiit etttk ettt e e skt e e ekt e e et e s st e e sa bt e e e br et e e anne e e e nanneees 136
AVERAGE FB INSIIUCTIONceeiutttteiiiete ettt ettt e skt e st e e st e e e e st e e e eabe e e e snne e e s b be e e e anbeeeesnneeeaasnreenas 137
INTEGRAL FB INSIIUCTION ...ttt ettt e ke s sttt e e st e e e st e e et et e e nnneeeannnneenan 137
DERIVATIVE FB INSIIUCHIONtiiieiiiiie sttt ettt ee ettt e ettt e e sttt e e e aste e e e ettt e e s amteeeeanteeeeeseeeesanneeaesnnneens 138
HYSTERESIS FB INSIIUCHION ...ttt etttk ettt et b et ettt e e b et e e b e neas 138
LIMITS_ALARM FB INSIIUCTIONeteiitiiis ittt ste e sttt e e e ss e e e ettt e e s st e e e snbeee e ennteeeesnneeaeannneeas 139
ANALOG_MONITOR FB INSIIUCLIONutiieeitiieeesiiieestiie e eiiee e e st e e steeeesstbee e s snseeeesssseeesssteeeeannneeesnnneeeeanseeeesns 139
IEC_PID FB INSIIUCHIONeeiiiitii ettt ettt et et e e ekt e e st e e st e e e s bt e e anb et e e nnn e e e aasrneenas 140
RAMP FB INSIIUCTION.ceeiititeiiiiie ettt e e bt e e ekt e e s e e e aab et e e et e e s anne e e e nnreees 141
TRANSFER FB INSIUCHIONciiiiitiiii ittt ettt et et e e e ettt e s st e e anb e e e ann e e e s s 141
Monitor and CONEIOL INSIIUCTIONSeviiiiiieee ittt e ettt e e et e s b e e e sab e e e e sb e e s nneeeesnreees 143
Designing DiIgital CONIIOIEISeiiiiiie ittt ettt e e st e e sb e e e asb e e e nne e e e snneees 144
Process Characteristics and CONIIOlcooiiiiiiiiiiiiie e 144
Feedforward CONIOL.........c..ii et e s e e s rne e e 147
MUILI-LOOP CONIIOIS ...ttt e oo ettt e e e e s e kbbbt e et e e e e e anbb bt et e e e e e annbbbeeeeeeeesnnnnnees 147
Structure and Mode of Operation of the PID CONIOl............ooiiiiiiiiiiiie e 150
Signal Processing in the Setpoint BranCh............ooiiiiiiiiiiie e 153
Signal Processing in the PID CONIOIE.........coiiiiiiiiiee ettt 153
Configuring and Starting the Standard PID CONLIOIc.uiiiiiiiieiiiie e 154
Defining the CONIOI TASKcciuiiiiiiii et e e e e e st e s e e 154
TYPE OF ACTUBLON ...ttt oo e e ettt e e e e st e et e e a2 oo e a bbbttt e e e e e e aab bbb e e eaeeesannbbeeeaeeeeaanns 155
Generating the Control Project CONfIQUIAtIONouiiiiiiiiiii et e e e e e 156
The SampPling TIME CYCLE...... e oot e ettt e e e e e s et b b et e e e e e e s s e bbb e eeeeeesaannnereeeaeeeaanns 157
How the Standard PID Controlis Called.............cooviiiiiiiiiiie e 158
Range of Values and Signal Adaptation (NOrmalization)ccueeeiiiieiiiiieiiiee e 158
Signal Processing in the Setpoint/Process Variable Channels and PID Controller Functions 158
Average Value Generator (AVG_GEN)coouiiiiiiiieiiii ettt e e
Rate of Change Alarm Generator (CHG_ALM)
Cycle Time CalCulator (CYC _TM) ... ettt e et e e e e e e e bbb e e e e e e e e e aabbaeeeaaeeeaabbesreeaeeasaanns
Filtering Signal FUNCtion (DEADBAND)uuiiiiiiiiiit ettt e e e et e e e e e e e anebr e e e e e e e e annenees
Unsigned Int to Signed Int Encoder (ENCODER)..........uiiiiiiiiiiiiieee ettt a e 162

SM Version 1.4 X 14 Series

3.6 FIrStIN FIrSt QUL (FIFO) ..oiiiiiiiiiiiiiii ettt e e e e et e e e e e e ettt e e e e e e s stbbaeeeaeeesassbtaeeaeeesansssbaeeeaaeas 162

3.7 Asymmetric Hysteresis Generator (HYST _GEN)coiiiiiiiiiiiiiiee et s et a e e e s sinrvaaeaa s 163
3.8 Damping the Process Variable (LAGL_GEN)cccuuiiiiie ittt e e et e e e e e s e saaban e e e e 163
3.9 Monitoring a Process Variable LimitS (LIM_ALM)ooiii it e e e e e anrvan e e 165
3.10 LOOP SChedUIET (LP_SCHED) ...ttt ettt ettt e e et e s s e e s s e s annneeens 166
3.11 Manual Value Generator (MAN_GEN)u ittt e e e e et e e e e e e et e e e e e e e e anneeees 168
3.12 NOIMANIZE (NORM)...... ettt et e oottt e e e e e ettt e e e e e e e e asnebaeeeeaeeaannsbeeeeaaeee e nsbseeeaaeeeaannnneeas 169
3.13 Standard PID (PID_STD) ...ciiiireireeeeeeeeseeseseeseeseesesesesseseesesses s sen s sesessessesessessessessnssneesneanensnesnenean. 170
3.14 PWM Signal Generator (PWM_GEN)..........uuiiiiiiiiiiiiiiee et e e e e e e e st e e e e e e e e s sabaaaeaae e e e ensraeees
3.15 PID Tuner by Relay Method (RELAY_TUNE)
3.16 RAMP S0K (RIMP_GEN) ...ciiiiiiiiiii ittt e et e e e e e e e et e e e e e s e e atb b e e e eeeeessntbaaeeaeeassnssaeees
3.17 Limiting the Rate of Change of a Value (ROC_GEN)..........cciiiiiiiieiiiiiiieie et 183
T T ot 1= (Uo7 Y =) OO 184
3.19 Gain SCheduling (SCH_GEN)uiiiiiiii ittt et e st e e snr e e 184
3.20 Scale With Parameters (SCP_INORM)uuiiiiiiiiiiiie ettt e e e snre e e e 185
3.21 PID Self TUNEI (SELF _TUNE)......uttiiiiieiiiiiiiiie ettt e e e e e e ettt e e e e e e s asste et e e e e e s sansbaeeeaaeeeansbsaaeeaeeasannsneees 186
3.22 Extracting the Square Root Normalization (SQRT_NORM)uutiiiiiiieiiiiee e sieee e 190
3.23 STACK COlECHON (STACK) ..etiieiiiite ettt ettt e e ettt e e et e e e s ae e e e e ste e e e anateeesnnaeeeaanteeeesnneeaesnnneens 191
3.24 Three Step Signal Generator (THREE_STEP_GEN)coccuuiiiiiieeiiiee e sieee e eeee e 191
3.25 Weighing SYSEM (WEIGH)cooiiiiii ettt ettt et e e b e e e st e e e ennee e e s snbeeeeantneeeans 192
12 TECHNOIOGY INSIFUCTIONSeeeitiie ettt e et e e ekt e e st e e sa bt e e aab et e e nbe e e e anbr e e e annneeesnnes 193
1. TEMPETATUIE CONTION ... eeeeeiiiie ettt et e e e et e e e bttt e e ab et e e sa bt e e e b be e e e nbe e e e anbr e e e anbne e e e nnnes 194
1.1 Temperature Control by TEMP_CONTROLLERccuiiiiiiiiieiite et 194
1.2 Temperature Control OptiMIZer (TEMP_OPT).....iiii ittt 197
13 ONliNe and DIiAgNOSHIC TOOISc.ueeieiiiiiee etttk e et e e s bt e e aa bt e e et e e e e s b b e e e e anb et e e nnnneeesnreeas 198
1. SEALUS LEDS ... e 199
1.1 StatUS LEDS 0N @ CPU ... 199
2. Going online and coNNECHING 0 8 CPUcooiiiiiiiiiiiie et e e e e et e e e e e e e s aannees 199
3. Displaying the Status Of the CPUoo et e e e e e e e e e e naebeeeeaens 200
4. Setting the date and tiIMe OF HAYuiiiiiiiii et 200
5. Displaying or setting CPU CONfIGUIALION.........cciuuiiiiiiiei ittt e et e s e e e nneees 200
6. RESEHING 10 fACLONY SEIINGS ... i ittiie ittt ettt et e e s bt e e et e e s e e e snnee s 200
Lo R (o Tot=To (1] P PO PP PPRPPPPRRN 201
8.2 RESUIL ..o et e e 201
7. CPU operator toolbar for the 0nliNe CPUuiiiiiiiee e e 201
8. Monitoring and modifying values in the CPU ... 201
8.1 Going online to Monitor the values iN the CPU ... 201
8.2 Displaying status in the Program €UItOreeeiiuiiiiiiiie e e e 202
8.3 Using a watch table to monitor and modify values in the CPU ... 202
9. RECOVENY frOM @ [OST PASSWOIUcciiiiiiiiitiee ettt ettt e ettt e et e e st e e e e bt e e e nbeeeesnneeas 203

10. Runtime Exceptions
O O e U I (=T] 1= £ TSRO

SM Version 1.4 xi 14 Series

Product Overview

Product Overview

The 14 PLC series can control a wide variety of devices to support your automation needs.

The 14 PLC monitors inputs and changes outputs as controlled by the user program, which can include Boolean
logic, counting, timing, complex math operations, and communications with other intelligent devices. The
compact design, flexible configuration, and powerful instruction set combine to make the 14 PLC a perfect
solution for controlling a wide variety of applications.

SM Version 1.4 1 14 Series

Product Overview

1. 14 PLC

The 14 PLC combines a microprocessor, an integrated power supply, input circuits, and output circuits in a
compact housing to create a powerful PLC. See Figure 1-1. After you have downloaded your program, the 14
PLC contains the logic required to monitor and control the input and output devices in your application.

Access door:
e Mode selector switch (RUN/STOP)

I/O LEDs ¢ Analog adjustment potentiometers
Status LEDs , / Expansion port
Power
Run

Fault

Communications port

Figure 1-1 14 PLC

Terminal connector

Intelart provides different 14 CPU models with a diversity of features and capabilities that help you create effective
solutions for your varied applications. Table 1-1 briefly compares some of the features of the CPU. For detailed
information about a specific CPU, see Appendix A.

Table 1-1 Comparison of the 14 CPU Models

Feature CP300 CP301 CP310
Physical size (mm) 90 x 96 x 61 121 x 96 x 61
Load memory 4 MB
Application memory 80 KB 160 KB
Retentive memory 72 bytes 4 KB
Memory

e M 8 KB 32 KB

o | 2 KB 8 KB

e Q 2KB 8 KB

e G 8 KB 32 KB
Permanent Memory 16 KB
Memory backup 5 Years typical
Supported modules 31 63
I/O integrated in CPU Yes, 6 DI, 8 DQ Yes, 6 DI, 4 DQ Yes, 13 DI, 16 DQ
Fast counters 3
PWM 3,1 KHz 0 3,1KHz
Pulse train 3 0 3
Frequency out 3 0 3
Analog POTs 2
Real-time clock Built-in

Communications ports

1 RS-232, 1 RS-485

1 RS-232, 1 RS-485,

1 Ethernet
Programming port uUsB Ethernet
Floating-point math Yes
Processor Arm, Cortex M4 Arm, Cortex M7
Bit operation 10 us 4 us

CPU startup modes
Configuration / programming
Software

Cold start, Warm start
Intelart Studio

SM Version 1.4

14 Series

Product Overview

2. 14 PLC Expansion Modules

To better solve your application requirements, the 14 PLC family includes a wide variety of expansion modules.
You can use these expansion modules to add additional functionality to the 14 PLC. Table 1-2 provides a list of
the expansion modules that are currently available. For detailed information about a specific module, see
Appendix A.

Table 1-2 14 PLC Expansion Modules

Module Inputs Outputs

Digital Modules
IM300 8 (Sink/Source) 8 (NPN)
IM301 8 (Sink/Source) 4 (Relay)
IM310 16 (Sink/Source) 0
IM320 0 16 (NPN)
IM330 0 8 (Relay)

Analog Modules
IM341 2 (0-24 mA, 0-10 V) 2 (0-24 mA, 0-10 V)
IM342 4 (0-24 mA, 0-10 V) 0
IM350 1 (DC, RTD, RES, Thermocouple) 1 (0-24 mA, 0-10 V)
IM351 2 (DC, RTD, RES, Thermocouple) 2 (0-24 mA, 0-10 V)
IM360 1 (Loadcell) 1 (0-24 mA, 0-10 V)
IM361 2 (Loadcell) 1(0-24 mA, 0-10 V)

SM Version 1.4 3 14 Series

Product Overview

3. Intelart Studio Programming Package

The Intelart Studio programming package provides a user-friendly environment to develop, edit, and monitor the
logic needed to control your application. Intelart Studio provides editors for convenience and efficiency in
developing the control program for your application. To help you find the information you need, Intelart Studio
provides an extensive online help forum and technical support.

3.1 Computer Requirements
Your computer or programming device should meet the following minimum requirements:
e Operating system: Windows 7 or higher
e Processor type: Pentium 4 or higher
e Atleast 500 MB of free hard disk space
e Atleast 1 GB of free RAM space

[§ e Edt Vew Deviee Took Window Hen . 5t IR

DataType. DefaubtValue Comment b B2Logic

b Werd Logic
Real b @ Comparizon
Resl b Mathematic
Rasl b Timer 8 Counter

b | Moving & Conversion

ssssNREl
B
7

 WEGHSYS
S PPN P A

#sBusy VAV b @ Mentor B Control

#ALLED INe
i | EN——
1t

145100k B Device Configuration B Siot]0) I CP300 B Program Blacks b WEIGH SYS

Figure 1-2 Intelart Studio

3.2 Installing Intelart Studio
You can download setup file from the following URL:

https://intelart.ir/products/software-products/intelart-studio

After running the setup file, the installation wizard starts automatically and prompts you through the installation
process. Note that some prerequisites may be installed based on your operating system installed runtime
packages.

4. Communications Options

Intelart provides the most common and economical method of connecting your computer to the 14 PLC. Based on
the type of the CPU you can use an ethernet cable or a USB B 2.0 cable.

SM Version 1.4 4 14 Series

https://intelart.ir/products/software-products/intelart-studio

Getting Started

Getting Started

Intelart Studio makes it easy for you to program your 14 PLC. In just a few short steps using a simple example,
you can learn how to connect, program, and run your 14 PLC.

All you need for this example is a USB (or ethernet) cable, an 14 PLC, and a programming device running the
Intelart Studio programming software.

SM Version 1.4 5 14 Series

Getting Started

1. Connecting the 14 PLC

Connecting your 14 PLC is easy. For this example, you only need to connect power to your |4 PLC and then
connect the communications cable (USB or Ethernet) between your programming device and the 14 PLC.

1.1 Connecting Power to the 14 PLC

The first step is to connect the 14 PLC to a power source. Figure 2-1 shows the wiring connections for a DC
model of the 14 PLC.

Before you install or remove any electrical device, ensure that the power to that equipment has been turned off.
Always follow appropriate safety precautions and ensure that power to the 14 PLC is disabled before attempting
to install or remove the 14 PLC.

/\ WARNING

Attempts to install or wire the 14 PLC or related equipment with power applied could cause electric shock or
faulty operation of equipment. Failure to disable all power to the 14 PLC and related equipment during
installation or removal procedures could result in death or serious injury to personnel, and/or damage to
equipment.

Always follow appropriate safety precautions and ensure that power to the 14 PLC is disabled before
attempting to install or remove the 14 PLC or related equipment.

Figure 2-1 Connecting Power to the 14 PLC

1.2 Connecting the Programming Cable

According to its structure, each CPU can be connected to a computer with one of the common cables such as
USB or ethernet. To know the type of program cable of your device, refer to Table 1-1 or specific technical sheet
of that device.

1.3 Starting Intelart Studio

Click on the Intelart Studio icon and then Create New Plant button to create a new project. Figure 2-4 shows a
new project.

Notice the Plant Explorer. You can use the icons on the plant explorer to open elements of the Intelart Studio
project.

Click on the Devices & Networks in the plant explorer to display the plant devices. You use this editor to manage
all devices and set up the communications for Intelart Studio.

SM Version 1.4 6 14 Series

Getting Started

What would you like to do?

SamplePlant.iapln

KianWeighing iapin

Plant0.iapln

KianWeighingEqu)

PlasmaFurnace.iapln

@- Open a Plant
-

I:E Create New Plant

Edited Plants History

Opening a currently
created plant

Creating a New Plant

Figure 2-2 Start Page

New Plant

Mame :
Location :

Comment :

Plant0

C\Users\Mahdi\Documentsiintelart Studio\Projects

f Create directory for plant

€ Cancel

Gox

Figure 2-3 New Plant Dialog

1.4 Establishing Communications with the 14 PLC

Click on the program port (PG) on the device element in the Devices & Networks editor. By selecting the PG port,
its configuration appears in Properties pane. after you set the PG parameters (IP or COM port name) with the
device, you are ready to Go Online to device. If Intelart Studio does not find your 14 PLC, a Programmer
Configuration dialog will be appeared in order to change the PG port parameters or search for available devices
on a network. If you are using an Ethernet port for programming, then a dialog with IP setting field and search

network tool will be appeared. For USB ports you must know the COM port name and select a COM port from
available detected connected COM ports from dialog.

SM Version 1.4

7 14 Series

Getting Started

B te it Vew Devee Jon Mo e — —
ag @~ T OW i@, i I # GoOnin

2 Devices & Networks™
D N |

[Sampieftant M0t T il ReckPLC
%3 Add New Device e i 41\ raine
e T % Device S

i Devies Configuration
T Oriine & Diagnostic
& Watch & Force List

4 T
b Uses Dstalypes

2 A oG ik
i eRTa i - Program Port
1D e e
| T Plant Explorer
U Smmthn
2 A ropam Bk
J Properties

ﬁ PG Configurations

Figure 2-4 New Intelart Studio Project

Device Programmer Configuration - O X

IP Address ;| 192.168.1.100 30 Search Network

Device Model Address Hardware Version Firmware Version Serial Number

@ Cancel @ ox

Figure 2-5 Programmer Configuration dialog

2. Creating a Sample Program

Entering this example of a control program will help you understand how easy it is to use Intelart Studio. This
program uses six instructions in three networks to create a very simple, self-starting timer that resets itself.

For this example, you use the Ladder (LAD) editor to enter the instructions for the program. The following
example shows the complete program in both LAD and Function Block Diagram (FBD). The timing diagram
shows the operation of the program.

SM Version 1.4 8 14 Series

Getting Started

¥ Network[0]: Metwork ¥ Network[0]: Metwork
Comment : Comment :
#IEC_Timer ZIEC_Timer
#IEC_Timer.Q TON =f TON
—|/|—|N [—y Z|EC_Timer.Q=— IN QuT —— N 0 — False
T£1000ms — PT ET — T#0ms T#1000ms — PT ET —T#0ms
%00.0.0 ¥ Network[1]: Metwork 1
#IEC_TimerET Tag Comment :
| > | f) -
I L °
T#400ms
> 300.00
ZIEC_Tirmer.ET — IN1 OuT —Tag
T#400ms — [W2
Timing Diagram
Current ET = 1000mMS esassessescassessees
Current ET = 400ms ===
IEC_Timer.ET »
>
IEC_Timer.Q | | | |
N HIEE
SM Version 1.4 9 14 Series

Getting Started

2.1 Opening the Program Editor

5 fie it Vew Devce ool Window Help . - o x
afa-

Program Editor

= CTUDINT
= CTUUNT
= CTU_UDINT

& CTu_uuNT
=D

= CTO_DBINT
= CToLNT
= CTO_UDINT
= CTOUUNT

AF AE B R DE AR A Sk ARE /=

Tag Definitions

¥ Metwork0]: Neswark

Program Network

Catalog

Quick Access
Toolbar

S T —

[T] CP310: Readly 145500 b Deviee Configuration b Siotf0] - CP10 » Program Blocks b Masin

Figure 2-6 A ladder program block

Double-click on a Program Block icon in plant explorer tree to open the program editor. See Figure 2-6.

Notice the catalog pane and the program editor. You use the catalog to insert the programming instructions into
the networks of the program editor by dragging and dropping the instructions from the catalog to the networks or
by double click on an instruction to place it on current editing network. When a network goes to editing mode, its
background gets highlight in order to distinguish the current editing network.

The toolbar icons provide shortcuts to the common instructions in catalog.

After you enter and save the program, you can download the program to the 14 PLC.

2.2 How to Program

When #IEC_Timer.Q is off (0), this contact turns on and provides power flow to start the timer. To enter the
contact for #lEC_Timer.Q:

1- In the plant explorer, double-click on the Main program block in the Program Blocks folder in order to
load its editor.

2- Either double-click the Bit Logic icon in the catalog or click on the triangle sign (») to display the bit
logic instructions.

3- Select the Normally Closed contact.
4- Hold down the left mouse button and drag the contact onto the first cell of network.
5- Double-click on the “???” above the contact and enter the following tag: #/IEC_Timer.Q
6- Press the Enter key to submit the tag for the contact.
To enter the timer instruction for TON:
1- Create a TON tag named “IEC_Timer “in the tag list in the top area of the program editor.
2- Double-click the Timer & Counter icon in catalog to display the timer instructions.
3- Select the TON (On-Delay Timer).
4- Hold down the left mouse button and drag the timer onto the next cell in network.

5- Click on the “???” above the timer box (Instance) and enter the following created tag hame in step 1:
IEC_Timer

SM Version 1.4 10 14 Series

Getting Started

6- Press the Enter key or click outside the editing box to submit the timer instance name and the double
click on the PT input of the timer in order to set the preset time.

7- Enter the following value for the preset time (PT): T#1000ms
8- Press the Enter key to submit the value.

When the timer elapsed time (ET) for IEC_Timer is greater than 400 milliseconds, (or 0.4 seconds), the contact
provides power flow to turn on output DQO of the 14 PLC. To enter the Compare instruction:

1- Double-click the Comparison icon to display the compare instructions. Select the > instruction (Greater
Than).

2- Hold down the left mouse button and drag the compare instruction onto the second row of network.

3- Click on the contact in order to select it. Notice the properties pane. You can customize some properties
for any selected element in all editors. Change the OperationDataType in the properties pane to Time.

4- Double-click on the “??7?” above the contact and enter the elapsed time for the timer: #IEC_Timer.ET.

5- Press the Enter key to submit the timer instance internal tag and Double-click on the “???” below the
contact.

6- Enter the following value to be compared with the timer value: T#400ms
7- Press the enter key to submit the value.
To enter the instruction for turning on output DQO:
1- Double-click the Bit Logic icon to display the bit logic instructions and select the output coil.
2- Hold down the left mouse button and drag the coil onto the next network.
3- Double-click on the “???” above the coil and enter the following address: %Q0.0.0

4- Press the Enter key to enter the tag for the coll. If a tag with the above address already exists, the editor
will assign that tag to the argument of the instruction elsewhere it will create a tag with the specified
address and then assigns the created tag to the instruction argument.

When the timer reaches the preset value (ET=1000ms) and turns the timer bit on, the contact for IEC_Timer
turns on. Because the timer is enabled by a Normally Closed contact for #lEC_Timer.Q, changing the state of
#IEC_Timer.Q from off (0) to on (1) resets the timer.

2.3 Saving the Sample Project

After entering the set of instructions, you have finished entering the program. When you save the program, you
create a new project file that includes the 14 PLC CPU type and other parameters. A file with the “.bak” extension
will be created next to the saved file contains the previous state of the created plant from last save.

To save a currently opened plant in another place:
1- Select the File > Save As menu command from the menu bar.
2- Choose one of the two saving methods.

3- Click OK to save the plant.

Save as "Ci\Users\Mahdi\Documents\Intelart Studio\Projects\SamplePlant\SamplePlantiapln® x

Original File: |C:\Users\Msahdi\Documents\Intelart Studio\Projects\SamplePlant\SamplePlantiapln

(O Save a copy and continue working on current file. .

L]
. v
® Save a copy, close current file and continue working on saved file.

Cancel @ ok

Figure 2-7 Saving as the Example Program

Q TP

You can make a backup of current state of the editing plant by File > Make Backup or press Ctrl+B
simultaneously.

After saving the project, you can download the program to the 14 PLC.

SM Version 1.4 11 14 Series

Getting Started

3. Downloading the Sample Program
Q TIP

Each Intelart Studio project is associated with a CPU type. If the target device type does not match the CPU to
which you are connected, Intelart Studio indicates a mismatch message in Output pane.

1- Click on the Go Online toolbar button or press Ctrl+K simultaneously in order to connect the device. See
figure 2-8.

2- Click the Compile and Download icon on the toolbar or select the relevant menu command in the Device
menu or press F6 to compile the current device and download the compiled program.

If your 14 PLC is in RUN mode, a dialog box prompts you to place the 14 PLC in STOP mode. Click Yes to place
the 14 PLC into STOP mode.

|E| File Edit View Device Tools Window Help

kil I R B OO i@ id
PiantEprorer o
TE

SamplePlant

Figure 2-8 Go Online toolbar button

4. Placing the 14 PLC in RUN Mode

For Intelart Studio to place the 14 PLC CPU in RUN mode, the mode switch of the 14 PLC will be override by the
Intelart Studio. When you place the 14 PLC in RUN mode, the 14 PLC executes the program:

1- Click the Warm Start (or Cold Start) icon on the toolbar or select the Device > Warm Start Device menu
command or press F5.

2- Click OK in the dialog to change the operating mode of the 14 PLC.

When the 14 PLC goes to RUN mode, the output LED for DQO turns on and off as the 14 PLC executes the
program.

Congratulations! You have just completed your first 14 PLC program.
You can monitor the program by selecting the Monitor Continuously toolbar button in each program editor.

Intelart Studio displays the values for the instructions. To stop the program, place the 14 PLC in STOP mode by
clicking the Stop toolbar button or by selecting the Device > Stop Device menu command or press Shift+F5.

/\ WARNING

When you disconnect the computer from device, its operating mode will be changed to the selected switch
state.

SM Version 1.4 12 14 Series

Getting Started

5. Easy-to-use tools

5.1 Inserting instructions into your user program

Intelart Studio provides a Catalog pane that brings up relevant elements when an editor opens. In program editor
the instructions are grouped according to their functionality.

To create your program, you drag instructions from the catalog pane onto a network.

A8 ik

&1 Bit Logic

im Werd Logic

¢ Comparison
Mathematic
Timer & Counter

.LEH

B

B

b

B

B

b Maving & Conversion
I # Program Control
b = Selection
bogg Time

b 1an Character & String
b 1@ System

b & Communication

B fE IEC Solutions

b L2 Menitor & Contral
b g Technology

Figure 2-9 Catalog Pane

¥ Metwork[0]: Metwork
Comment :
2IEC_Timer
FIEC_Timer.Q TON
—|f|— 1M g——-
T#1000ms — PT ET —T#0ms
300,00
2|EC_Timer.ET Tag
1 {1\
— > | \)
T#400ms

Figure 2-10 Dragging an Instruction on a LAD Network

SM Version 1.4

13

14 Series

Getting Started

5.2

Inserting Instructions from the “Quick Access” Toolbar

Intelart Studio provides a “Quick Access” toolbar to give you quick access to the instructions that frequently use
in programming. Simply click the icon for the instruction to insert it into your network!

AF V| APE AN D R A A AR - P N [—

¥ Network[0]: MNetwork
Comment :
#|EC_Timer
#|EC_Timer.Q TON <777
- —n o— (s}
T#1000ms — PT ET—T#0ms
300.0.0
ZF|EC_Timer.ET Tag
1 {3
— > | \)
T#400ms

Figure 2-11 Quick Access Toolbar

5.3

Some of the instructions allow you to create additional inputs or outputs.

Adding inputs or outputs to a LAD or FBD instruction

To add or remove last input or output, select that instruction by mouse then click the " 2" or " ¥ " icon in the
Properties pane. You can also specify the count by entering a number in the relevant editing box.

P e s
¥ Network[0]: Metwork
Comment :
ADD
Properties I x EN ENO
Name : | ADD
n) <777 —{IN1 QUT|— =222
Type : Instruction
Arrangement | Category - <777 —{IN2
* Configuration 7778 —INa
InstructionType ADD -
OperationDataType Int - <E77 —IN4
InputsCount 4 :l:?

Figure 2-12 Increase or Decrease Inputs or Outputs of a Specific Instruction

SM Version 1.4 14

14 Series

Getting Started

54 Selecting a version for an instruction

The development and release cycles for certain sets of instructions (such as Modbus, PID and motion) have
created multiple released versions for these instructions. Also, some instructions have multiple functions. To help
ensure compatibility and migration with older projects, or use of another functionality of an instruction Intelart
Studio allows you to choose which version of instruction to insert into your user program.

Click the icon on the instruction Catalog to enable the version selection box of the instruction. To change the
version of the instruction, select the appropriate version from the drop-down list.

Catalog x

SR T N -

4 15 Bit Logic
&
»=1
X
=/
SR

SRR
2

=
=

The autput | 3 g
rising edge
(BOOLCL ,3'0 T 7

Figure 2-13 Choosing different version of an Instruction

SM Version 1.4 15 14 Series

Getting Started

55 Modifying the appearance and configuration of Intelart Studio

You can select a variety of settings, such as the appearance of the interface, or other settings for more
customization of your work bench.

Select the “ Options “ command from the "Tools" menu to change these settings.

Options >
Environment
Plant and Editors ColorTheme: | Blue =
Online & Maonitoring Light
| Save Auto| Dark ery:
10 =

of Order tag picker items by name
Clear clipboard (if used) on application exit
o Always show clear clipboard request dialog on exit

Figure 2-14 Options Dialog

145000 P Device Configuration I Slotf0) B CPI10 B Program Blocks I Main

Figure 2-15 Dark Theme Applied to Intelart Studio

5.6 Changing the operating mode of the CPU
Use the “Warm Start” (or “Cold Start”) and “Stop” toolbar buttons to change the operating mode of the CPU.

SM Version 1.4 16 14 Series

Getting Started

When you configure the CPU in the device configuration, you configure the start-up behavior in the “Online &
Diagnostic” of the CPU.

The “Online and diagnostics” also provides an operator panel for changing the operating mode of the online CPU.
To use the CPU operator panel, you must be connected online to the CPU. The “Status” task card displays an
operator panel that shows the operating mode of the online CPU. The operator panel also allows you to change
the operating mode of the online CPU or other system configurations such as password or Emergency Stop
trigger. Also, you can change RTC or upgrade the firmware of device by this panel.

5.7 Modifying the Hardware Configuration of CPU and Expansion Modules

Double-click “Device Configuration” in plant explorer then you see a schematic of CPU and its expansion
modules. By clicking on a module, its configuration parameters appear in Properties pane.

5 fie it Vew Devce ool Window Help . - o x
ST a2 - o i@, Eili g3 ¥ GoOnine

=

4 1 0O
D e
0
0 e

T

D e

0 M

Catalog Pane L e

U s

o e
0 e

N |~ INTELART]

e

m

Degrees Celsius:

(Properties Pane

output

(1) CPa10 Reody 146300t I Device Canfiguration

Figure 2-16 Device Configuration Editor

By dragging and dropping the expansion modules from the catalog to the rail or by double click on an expansion
module to place it on the current rail.

5.8 Mapping Module Tags

When you install a CPU or an expansion module, its hardware tags will be accessible by double-click on the
module schematic in “Device Configuration” editor or by finding it in “Local Modules” folder in Plant Explorer pane
and double-click on it. You should do the following:

1- Select all tags you need in the list
2- Click on “Map Tags” toolbar button
3- Select an external tag table in the dialog in order to place the mapped tags

4- Click on Ok to Intelart Studio create the selected tags in the list

SM Version 1.4 17 14 Series

Getting Started

IS] Fie Edit View Device Tools Window Help - Intelart Studio
i - Q- B _ifay _ v _ o & GoOnline Go Offline Warm Start ~ 1 _
Plant Explorer 03| 5 Devices & Metworks /2 MS00G¢* 57 Msin® £7 Periodicinterupt (3 Online & Diagnostic*
iaa | ¥ Map Tags
& Devices 8 Networks w " Name DataType Address Comment
4 R 450 1 DIoo Bool %I10.0
o Device Configuration 2 Bl Exol L]
Orline 8.0 B 3 Dio2 Bool %102
1y CiTrEirE e 4 Dio3 Baol 2003
&» Watch & Force List 5 Dio4 Baal %104
P [m PLCTags 6 Dlos Boal %105
4 B Program Blodks 7 DIoG Boal %106
svetem Blocke £ Dio7 Boal %107
an 2ystem Bloc o DIos Bool %10
49 Add Mew Program Block o Dioe Boal %11
- Main 11 Di10 Bool %I1.2
a Periodicinterrupt 12 b Bool %13
13 D2 Boal %14
4 Local Modul
[oca Modu= 14 DI00_07 Byte %180
i cp310 15 DI08_12 Byte %181
B m3st 16 Do 12 Word S%IWO
i M300 17 PulseReadyl00 Bool %180
= 18 PulseReadyl01 Bool %181
Properties 1 x| i PulseReadyl02 Boal %18.2
I] Mame : CP310 120 FastRegl00 Ulnt W2
21 FastRegl01 Ulnt %IW4
IEFEAEHI 22 FastRegl02 Ulnt LIWE
Arrangement : Category A £ DQo Bool %000
- 24 DQo1 Bool %001
¥ Information 25 DQo2 Bool %002
» Configuration | DQo3 Bool %003
P Input0 27 DQ04 Bool %004
P Inputi 8 DQOS Boal %005
¥ Inputz 29 DQO6 Boal %006
Y Input32 20 DQO? Bool %Q0.7
Figure 2-17 A module tags list
IS| Fie Edit View Device Tooks Window Help ! - Intelart Studio
iBE WY -0 - xFa X PR i@ i _i & GoOnline Go Offline Warm Start = = _
& Devices & Networks /2 MSX)0Gc* Periodiclnterrupt @ Online & Diagnostict [T cp310 [External TagTable® %
-l i
3 Devices & Networks w Name DataType Address Comment
4 il 48000 1 ~ Static
J Device Configuration 2 ® T Bool %00.00
Uy Online & Diagnostic p ™[[00Dioo Fzzl IR
&b Watch & Force List L ® iooDiol Bool %00.1
P OoEs 5 3 100_PulseReadyl00 Boal FI0.8.0
L o s ® 100 FastRegl0D Ulnt %IW0.2
P MR User Datalypes 7 ® i00.DQ0 Bool %Q000
*IJ Add New External Table 5 D 100 DO01 Bool %00.0.1
4 Add New Global Table e = ioopao? Bool %Q0.02
dp Default TagTable o ® 100D00 Bool %0003
MM External TagTable i ® 1000004 Boal %Q0.04
M CPU_Registers 12 5 <Add New ltem>
4 g Program Blocks
‘& System Blocks
% Add Mew Program Block

Figure 2-18 Created tags in the external tag table

NOTICE

Addressing of | and Q area tags is a bit different from M area tags. All | and Q area tags address starts by a
number that indicates the physical address of that area.

5.9 Importing license files

You can include license files (.ialic) in license manager by following steps:

Tools | Window Help Intelart Stud

1- Open License Manager in Tools menu. ¥ Options L
p

I ﬁt.-l License Manager _;

Ecﬂ Transfer Program to 5D Card

. . License Manager
2- In the opened dialog click on “Import License File” 0

button in toolbar. 25

rF L - - License File
Import License File |) 00a3720DC617F201D0A alic

2 38 EAF403109E4FB1096DGEETTIABCT SAF2A alic

—

3- Select the file and then press “Close” button.

SM Version 1.4 18 14 Series

Getting Started

SM Version 1.4 19 14 Series

Installing the 14 PLC

Installing the 14 PLC

The 14 PLC equipment is designed to be easy to install. You can use the mounting holes to attach the modules to

a panel, or you can use the built-in clips to mount the modules onto a standard (DIN) rail. The small size of the 14
PLC allows you to make efficient use of space.

This chapter provides guidelines for installing and wiring your 14 PLC system.

SM Version 1.4 20 14 Series

Installing the 14 PLC

1. Guidelines for Installing 14 PLC Devices

You can install an 14 PLC either on a panel or on a standard rail, and you can orient the 14 PLC either horizontally
or vertically.

/\ WARNING

The 14 PLC devices are Open Type Controllers. It is required that you install the 14 PLC in a housing, cabinet,
or electric control room. Entry to the housing, cabinet, or electric control room should be limited to authorized
personnel.

Failure to follow these installation requirements could result in death or serious injury to personnel, and/or
damage to equipment.

Always follow these requirements when installing 14 PLC devices.

1.1 Separate the 14 PLC Devices from Heat, High Voltage, and Electrical Noise

As a general rule for laying out the devices of your system, always separate the devices that generate high
voltage and high electrical noise from the low-voltage, logic-type devices such as the 14 PLC.

When configuring the layout of the 14 PLC inside your panel, consider the heat-generating devices and locate the
electronic-type devices in the cooler areas of your cabinet. Operating any electronic device in a high-temperature
environment will reduce the time to failure.

Consider also the routing of the wiring for the devices in the panel. Avoid placing low voltage signal wires and
communications cables in the same tray with AC power wiring and high-energy, rapidly-switched DC wiring.

1.2 Provide Adequate Clearance for Cooling and Wiring

14 PLC devices are designed for natural convection cooling. For proper cooling, you must provide a clearance of
at least 25 mm above and below the devices. Also, allow at least 75 mm of depth.

/\ WARNING

For vertical mounting, the maximum allowable ambient temperature is reduced by 10 degrees C. Mount the 14
PLC CPU below any expansion modules.

When planning your layout for the 14 PLC system, allow enough clearance for the wiring and communications
cable connections. For additional flexibility in configuring the layout of the 14 PLC system, use the 1/0O expansion

cable.
Clearance 35 mm
B / —L j— 1 mm
N) -] H_H 7.5 mm T
‘ =]

L]
= . . - et
E - E - HE | | } DIN Rail
* 1 | D
25 mm EEEEE [] 2 ‘
s
‘ b i \ n. 75mm p
N S
| \ =
Lo =[])
I T T T & H_H Front of the p Mounting
o T] - Enclosure ~ } Surface
_,,,, |E o ME MI ﬂEi Vertical Panel o
o . . Mounting
R e BB P i © Side View

Horizontal DIN Rail Mounting with Optional
Expansion Cable (limit one per system)

Figure 3-1 Mounting Methods, Orientation, and Clearance

SM Version 1.4 21 14 Series

Installing the 14 PLC

2. Installing and removing the 14 PLC Modules

The 14 PLC can be easily installed on a standard DIN rail or on a panel.

2.1 Prerequisites

Before you install or remove any electrical device, ensure that the power to that equipment has been turned off.
Also, ensure that the power to any related equipment has been turned off.

/\ WARNING

Attempts to install or remove 14 PLC or related equipment with the power applied could cause electric shock or
faulty operation of equipment.

Failure to disable all power to the 14 PLC and related equipment during installation or removal procedures
could result in death or serious injury to personnel, and/or damage to equipment.

Always follow appropriate safety precautions and ensure that power to the 14 PLC is disabled before
attempting to install or remove 14 PLC CPUs or related equipment.

Always ensure that whenever you replace or install an 14 PLC device you use the correct module or equivalent
device.

/\ WARNING

If you install an incorrect module, the program in the 14 PLC will generate an IO exception.

Failure to replace an 14 PLC device with the same model, orientation, or order could result in death or serious
injury to personnel, and/or damage to equipment.

Replace an 14 PLC device with the same model, and be sure to orient and position it correctly.

2.2 Mounting Dimensions

The 14 PLC CPUs and expansion modules include mounting holes to facilitate installation on panels. Refer to
Table 3-1 for the mounting dimensions.

Table 3-1 Mounting Dimensions

» < 9.5 mm* * Minimum spacing
between modules
A —» when hard-mounted
4 mm
_L |<7 B —
@[@ Mounting holes
f (M4 or No. 8)
1] L]
§ ' oooooooo oooooooo I H oooooooo
96 mm 88 mm 80 mm
> >
L Oooooooo oooooooog f H oooooooo A
! I I I
AN © T ©
A
4 mm J 4 mm ‘<_<— B —
14 Module Width A Width B
CP300, CP301 90 mm 82 mm
CP310 121 mm 113 mm
IM300, IM301, IM310, IM320, IM330 71.2 mm 63.2 mm
IM341, IM342, IM350, IM351, IM360, IM361 46 mm 38 mm

SM Version 1.4 22 14 Series

Installing the 14 PLC

2.3 Installing a CPU or Expansion Module

Installing the 14 PLC is easy! Just follow these steps.

Panel Mounting

1- Locate, drill, and tap the mounting holes (M4 or American Standard number 8), using the dimensions in
Table 3-1.

2- Secure the module(s) to the panel, using the appropriate screws.

3- If you are using an expansion module, connect the expansion module ribbon cable into the expansion
port connector under the access door.

DIN Rail Mounting
1- Secure the rail to the mounting panel every 75 mm.

2- Snap opens the DIN clip (located on the bottom of the module) and hook the back of the module onto
the DIN rail.

3- If you are using an expansion module, connect the expansion module ribbon cable into the expansion
port connector under the access door.

4- Rotate the module down to the DIN rail and snap the clip closed. Carefully check that the clip has
fastened the module securely onto the rail. To avoid damage to the module, press on the tab of the
mounting hole instead of pressing directly on the front of the module.

Q TIP

Using DIN rail stops could be helpful if your 14 PLC is in an environment with high vibration potential or if the 14
PLC has been installed vertically.

If your system is in a high-vibration environment, then panel-mounting the 14 PLC will provide a greater level of
vibration protection.

2.4 Removing a CPU or Expansion Module
To remove an 14 PLC CPU or expansion module, follow these steps:
1- Remove power from the 14 PLC.
2- Disconnect all the wiring and cabling that is attached to the module.

3- If you have expansion modules connected to the unit that you are removing, open the access cover door
and disconnect the expansion module ribbon cable from the adjacent modules.

4- Unscrew the mounting screws or snap open the DIN clip.

5- Remove the module.

SM Version 1.4 23 14 Series

Installing the 14 PLC

3. Guidelines for Grounding and Wiring

Proper grounding and wiring of all electrical equipment is important to help ensure the optimum operation of your
system and to provide additional electrical noise protection for your application and the 14 PLC.

3.1 Prerequisites

Before you ground or install wiring to any electrical device, ensure that the power to that equipment has been
turned off. Also, ensure that the power to any related equipment has been turned off.

Ensure that you follow all applicable electrical codes when wiring the 14 PLC and related equipment. Install and
operate all equipment according to all applicable national and local standards. Contact your local authorities to
determine which codes and standards apply to your specific case.

/\ WARNING

Attempts to install or wire the 14 PLC or related equipment with power applied could cause electric shock or
faulty operation of equipment. Failure to disable all power to the 14 PLC and related equipment during
installation or removal procedures could result in death or serious injury to personnel, and/or damage to
equipment.

Always follow appropriate safety precautions and ensure that power to the 14 PLC is disabled before
attempting to install or remove the 14 PLC or related equipment.

Always take safety into consideration as you design the grounding and wiring of your 14 PLC system. Electronic

control devices, such as the 14 PLC, can fail and can cause unexpected operation of the equipment that is being
controlled or monitored. For this reason, you should implement safeguards that are independent of the 14 PLC to
protect against possible personal injury or equipment damage.

/\ WARNING

Control devices can fail in an unsafe condition, resulting in unexpected operation of controlled equipment.
Such unexpected operations could result in death or serious injury to personnel, and/or damage to equipment.
Use an emergency stop function, electromechanical overrides, or other redundant safeguards that are
independent of the 14 PLC.

3.2 Guidelines for Isolation

14 PLC AC power supply boundaries and 1/0 boundaries to AC circuits have been designed and approved to
provide safe separation between AC line voltages and low voltage circuits. These boundaries include double or
reinforced insulation, or basic plus supplementary insulation, according to various standards. Components which
cross these boundaries such as optical couplers, capacitors, transformers, and relays have been approved as
providing safe separation.

/\ WARNING

Use of non-isolated or single insulation supplies to supply low voltage circuits from an AC line can result in
hazardous voltages appearing on circuits that are expected to be touch safe, such as communications circuits
and low voltage sensor wiring.

Such unexpected high voltages could result in death or serious injury to personnel, and/or damage to
equipment.

Only use high voltage to low voltage power converters that are approved as sources of touch safe, limited
voltage circuits.

3.3 Guidelines for Grounding the 14 PLC

The best way to ground your application is to ensure that all the common and ground connections of your 14 PLC
and related equipment are grounded to a single point. This single point should be connected directly to the earth
ground for your system.

For improved electrical noise protection, it is recommended that all DC common returns be connected to the
same single-point earth ground. Connect the 24 VDC sensor supply common to earth ground.

All ground wires should be as short as possible and should use a large wire size, such as 2 mm? (14 AWG).

When locating grounds, remember to consider safety grounding requirements and the proper operation of
protective interrupting devices.

SM Version 1.4 24 14 Series

Installing the 14 PLC

3.4 Guidelines for Wiring the 14 PLC

When designing the wiring for your 14 PLC, provide a single disconnect switch that simultaneously removes
power from the 14 PLC CPU power supply, from all input circuits, and from all output circuits. Provide overcurrent
protection, such as a fuse or circuit breaker, to limit fault currents on supply wiring. You might want to provide
additional protection by placing a fuse or other current limit in each output circuit.

Install appropriate surge suppression devices for any wiring that could be subject to lightning surges.

Avoid placing low-voltage signal wires and communications cables in the same wire tray with AC wires and high-
energy, rapidly switched DC wires. Always route wires in pairs, with the neutral or common wire paired with the
hot or signal-carrying wire.

Use the shortest wire possible and ensure that the wire is sized properly to carry the required current. The
connector accepts wire sizes from 2 mm? to 0.3 mm? (14 AWG to 22 AWG). Use shielded wires for optimum
protection against electrical noise. Typically, grounding the shield at the 14 PLC gives the best results.

When wiring input circuits that are powered by an external power supply, include an overcurrent protection device
in that circuit. External protection is not necessary for circuits that are powered by the 24 VDC sensor supply from
the 14 PLC because the sensor supply is already current-limited.

To avoid damaging the connector, be careful that you do not over-tighten the screws. The maximum torque for
the connector screw is 0.56 N-m (5 inch-pounds).

To help prevent unwanted current flows in your installation, the 14 PLC provides isolation boundaries at certain
points. When you plan the wiring for your system, you should consider these isolation boundaries. Refer to
Appendix A for the amount of isolation provided and the location of the isolation boundaries. Isolation boundaries
rated less than 1500 VAC must not be depended on as safety boundaries.

Q TIP

For a communications network, the maximum length of the communications cable is 50 m without using a
repeater. The communications port on the 14 PLC is non-isolated. Refer to Chapter 7 for more information.

35 Guidelines for Inductive Loads

You should equip inductive loads with suppression circuits to limit voltage rise when the control output turns off.
Suppression circuits protect your outputs from premature failure due to high inductive switching currents. In
addition, suppression circuits limit the electrical noise generated when switching inductive loads.

Q TP

The effectiveness of a given suppression circuit depends on the application, and you must verify it for your
particular use. Always ensure that all components used in your suppression circuit are rated for use in the
application.

DC Outputs and Relays That Control DC Loads

The DC outputs have internal protection that is adequate for most applications. Since the relays can be used for
either a DC or an AC load, internal protection is not provided.

Figure 3-2 shows a sample suppression circuit for a DC load. In most applications, the addition of a diode (A)
across the inductive load is suitable, but if your application requires faster turn-off times, then the addition of a
Zener diode (B) is recommended. Be sure to size your Zener diode properly for the amount of current in your
output circuit.

A B (Optional)

11
N
A - 1N4001 diode or equivalent
B - 8.2 V Zener for DC Outputs
Output _| 36 V Zener for Relay Outputs

Point
DC Inductive Load

Figure 3-2 Suppression Circuit for a DC Load

AC Outputs and Relays That Control AC Loads

The AC outputs have internal protection that is adequate for most applications. Since the relays can be used for
either a DC or an AC load, internal protection is not provided.

Figure 3-3 shows a sample suppression circuit for an AC load. When you use a relay or AC output to switch 115
V/230 VAC loads, place resistor/capacitor networks across the AC load as shown in this figure. You can also use

SM Version 1.4 25 14 Series

Installing the 14 PLC

a metal oxide varistor (MOV) to limit peak voltage. Ensure that the working voltage of the MOV is at least 20%
greater than the nominal line voltage.
100 nF 100to 120 Q
—wW—

MOV

Output, _{C)_
Point

AC Inductive Load

Figure 3-3 Suppression Circuit for an AC Load

/\ WARNING

When relay expansion modules are used to switch AC inductive loads, the external resistor/capacitor noise suppression
circuit must be placed across the AC load to prevent unexpected machine or process operation. See Figure 3-3.

3.6 Guidelines for Lamp Loads

Lamp loads are damaging to relay contacts because of the high turn-on surge current. This surge current will
nominally be 10 to 15 times the steady state current for a Tungsten lamp. A replaceable interposing relay or
surge limiter is recommended for lamp loads that will be switched a large number of times during the lifetime of
the application.

SM Version 1.4 26 14 Series

Installing the 14 PLC

SM Version 1.4 27 14 Series

PLC Concepts

PLC Concepts

1. Execution of the user program

The CPU supports the following types of code blocks that allow you to create an efficient structure for your user
program:

e Organization blocks (OBs) define the structure of the program. Some OBs have predefined behavior
and start events, but you can also create OBs with custom start events.

e Functions (FCs) and function blocks (FBs) contain the program code that corresponds to specific tasks
or combinations of parameters. Each FC or FB provides a set of input and output parameters for sharing
data with the calling block.

Execution of the user program begins with one or more optional start-up organization blocks (OBs) which are
executed once upon entering RUN mode, followed by one cyclic program OB which is executed cyclically. An OB
can also be associated with an interrupt event, which can be either a standard event or an error event, and
executes whenever the corresponding standard or error event occurs.

A function (FC) or a function block (FB) is a block of program code that can be called from an OB or from another
FC or FB.

The size of the user program, data, and configuration is limited by the available load memory and application
memory in the CPU. There is a specific limit to the number of each individual OB, FC, FB and other programming
elements. For more details refer to technical data of each CPU.

Each cycle includes writing the outputs, reading the inputs (when has 1/O control), executing the user program
instructions, and performing background processing. The cycle is referred to as a scan cycle or scan.

The expansion modules are detected and logged in only upon power-up.
Inserting or removing a module in the central rail under power (hot) is not supported.

Never insert or remove a module from the central rail when the CPU has power.

/\ WARNING

Insertion or removal of an expansion module from the central rail when the CPU has power could cause
unpredictable behavior, resulting in damage to equipment and/or injury to personnel.

Always ensure that power is removed from the CPU before inserting or removing a module from the central
rail.

Under the default configuration, all local digital and analog I/O points are updated synchronously with the scan
cycle using an internal memory area called the process image.

The process image contains a snapshot of the physical inputs and outputs (the physical I/0 points on the CPU
and expansion modules).

The CPU performs the following tasks:
e The CPU writes the outputs from the process image output area to the physical outputs.

e The CPU reads the physical inputs just prior to the execution of the user program and stores the input
values in the process image input area. This ensures that these values remain consistent throughout the
execution of the user instructions.

SM Version 1.4 28 14 Series

PLC Concepts

e The CPU executes the logic of the user instructions and updates the output values in the process image
output area instead of writing to the actual physical outputs.

This process provides consistent logic through the execution of the user instructions for a given cycle and
prevents the flickering of physical output points that might change state multiple times in the process image
output area.

You can specify whether digital and analog I/O points are to be automatically updated and stored in the process
image. If you insert a module in the device configuration, its data is located in the process image of the CPU
(default). The CPU handles the data exchange between the module and the process image area automatically
during the update of the process image.

SM Version 1.4 29 14 Series

PLC Concepts

1.1 Operating modes of the CPU

The CPU has three modes of operation: STOP mode, TRANSIENT TO RUN (STARTUP) mode, RUN mode and
TRANSIENT TO STOP mode.
Status LEDs on the front of the CPU indicate the current mode of operation.

e In STOP mode, the CPU is not executing the program. You can download a project.

e In STARTUP mode, the CPU configs itself and expansion modules. Then the startup OB (if present) is
executed once. Interrupt events are not processed during the startup OB execution.

¢ In RUN mode, the cyclic program OB is executed repeatedly. Interrupt events can occur and be
processed at any point within the RUN mode.

The CPU supports a warm start for entering the RUN mode. Warm start does not include a memory reset. All
non-retentive system and user data are initialized at warm start. Retentive user data is retained.

A memory reset clears all retentive and non-retentive memory areas, and resets all expansion module
configurations. A memory reset does not clear the diagnostics buffer or the saved values in permanent memory.

NOTICE

When you change retain tags or a module configuration and download program to CPU, the retentive values
are set to their default values. The next transition to RUN performs a warm start, setting all non-retentive data
to their default values and setting all retentive data to their retained values.

You can configure the "start mode after POWER ON" setting of the CPU. This configuration item appears under
the Options in “Online & Diagnostic” for the CPU under “Start Mode”. When power is applied, the CPU performs a
sequence of power-up diagnostic checks and system initialization. During system initialization the CPU deletes all
non-retentive tag values to the initial values from load memory. The CPU retains retentive tag values and then
enters the appropriate operating mode. Certain detected errors prevent the CPU from entering the RUN mode.

You can change the current operating mode using the "STOP" or "RUN" commands from the online tools of the
programming software. You can also include a STOP instruction in your program to change the CPU to STOP
mode. This allows you to stop the execution of your program based on the program logic.

In STOP mode, the CPU handles any communication requests (as appropriate) and performs self-diagnostics.
The CPU does not execute the user program, and the automatic updates of the process image do not occur.

You can download your project only when the CPU is in STOP mode.

SM Version 1.4 30 14 Series

PLC Concepts

In STARTUP and RUN modes, the CPU performs the tasks shown in the following figure.

Figure 4-1 Processing cycle steps

STARTUP RUN
A. Clears the | (image) memory area 1. Performs self-test diagnostics
B. Initializes the outputs with either the last 2. Copies the state of the physical inputs to |
value or the substitute value Memory
C. Executes the startup OB (If available) 3. Executes the program cycle OBs
D. Copies the state of the physical inputs to | 4. Writes Q memory to the physical outputs
memory

5. Processes interrupts and communications
E. Stores any interrupt events into the queue to during any part of the scan cycle
be processed after entering RUN mode

F. Enables the writing of Q memory to the
physical outputs

STARTUP processing

Whenever the operating mode changes from STOP to RUN, the CPU clears the process image inputs, initializes

the process image outputs and processes the startup OB. All OBs has a property named “Has 10 Control” which

specifies whether CPU can update | (image) memory area before the execution of the OB and write Q memory to
the physical outputs.

NOTICE

Some OBs executes like a loop such as Cyclic Program, Periodic Interrupt, Time of Day Interrupt. Only one
OB can control the 1/0 simultaneously. Enabling “Has 10 Control” property of each loop OB will disable the
other loop OBs.

In the startup OB you can determine the validity of retentive data and the time-of-day clock and other system
diagnostics information by accessing the special memory tags. You can program instructions inside the startup
OB to examine these special tag values and to take appropriate action.

The CPU also performs the following tasks during the startup processing.
Interrupts are queued but not processed during the startup phase

No cycle time monitoring is performed during the startup phase

1.2 Processing the scan cycle in RUN mode

For each scan cycle, the CPU reads the inputs, executes the user program, writes the outputs, updates
communication modules, and responds to user interrupt events and communication requests. Communication
requests are handled periodically throughout the scan.

These actions are serviced regularly and in sequential order. User interrupt events which are enabled are
serviced according to priority in the order in which they occur.

The following steps will be executed on each OB:

e The scan cycle starts by reading the current values of the digital and analog inputs from the CPU and
expansion modules and then writing these values to the process image when the OB has I/O control.

SM Version 1.4 31 14 Series

PLC Concepts

e After reading the inputs, the user program is executed from the first instruction through the end
instruction. This includes all the program cycle OB plus all their associated FCs and FBs. The program
cycle OB are executed in order according to its priority and execution condition.

e Ifthe OB has I/O control, the scan cycle ends by preparing the current values of the digital and analog
outputs from the process image and then writing them to the physical outputs of the CPU and expansion
modules.

Communications processing occurs periodically throughout the scan, possibly interrupting user program
execution.

Interrupts can occur during any part of the scan cycle, and are event-driven. When an event occurs, the CPU
interrupts the scan cycle and calls the OB that was configured to process that event. After the OB finishes
processing the event, the CPU resumes execution of the user program at the point of interruption.

1.3 Organization blocks (OBs)

OBs control the execution of the user program. Specific events in the CPU or a hardware event
trigger the execution of an organization block. OBs cannot call each other or be called from an FC or
FB. Only a start event, such as a diagnostic interrupt or a time interval, can start the execution of an
OB. The CPU handles OBs according to their respective priority classes, with higher priority OBs
executed before lower priority OBs. The lowest and highest priority class may vary for individual
CPUs. In order to see the priority classes for a CPU refer to its technical data.

OBs control the following operations:

e Cyclic Program OBs execute cyclically while the CPU is in RUN mode. The main block of the program is
a Cyclic Program OB. This is where you place the instructions that control your program and where you
call additional user blocks. Only one Cyclic Program OB is allowed and always executes repeatedly.
The Main OB is the default. Other program cycle OBs must be created by user.

e Startup OB executes one time when the operating mode of the CPU changes from STOP to RUN,
including powering up in the RUN mode and in commanded STOP-to-RUN transitions. After completion,
the main "Cyclic Program" OB will begin executing. Only one startup OB is allowed.

e Periodic interrupt OBs execute at a specified interval. A periodic interrupt OB will interrupt cyclic
program execution at user defined intervals, such as every 2 seconds. You can configure up a limited
number of these kind of OB. Refer to technical data of a CPU to see the maximum count of such OBs.

e Hardware interrupt OBs execute when the relevant hardware event occurs, including over range or
under range of analog inputs. A hardware interrupt OB will interrupt normal cyclic program execution in
reaction to a signal from a hardware event. You define the events in the properties of the hardware
configuration. One OB is allowed for Hardware interrupt OB.

e Time of Day interrupt OB executes at every second. A Time-of-Day interrupt OB will interrupt cyclic
program execution at one second intervals. You can configure only one Time of Day interrupt OB.

e Stop Program OB executes one time when the operating mode of the CPU changes from RUN to
STOP.

e Emergency Stop Program OB executes cyclically when a hardware emergency stop trigger occurs.
Emergency Stop Program will be executed and all other OBs will be stopped until its hardware trigger is
enabled.

The cyclic program executes once during each program cycle (or scan). During the cyclic program, the CPU,
reads the inputs, executes program and writes the outputs. The cyclic program event is required and is always
enabled. You cannot delete cyclic program OB otherwise the program will not be compiled.

The periodic interrupts allow you to configure the execution of an interrupt OB at a configured scan time. The
initial scan time is configured when the OB is created and selected to be a periodic interrupt OB. A periodic event
will interrupt the cyclic program and execute the periodic interrupt OB (the periodic event is at a higher priority
class than the cyclic program).

Understanding Hardware Interrupt OB

Analog (local) or other expansion modules are capable of detecting and reporting diagnostic errors. The
occurrence or removal of any of several different diagnostic error conditions results in a diagnostic error event.
The following are some of diagnostic errors that are supported:

e No user power

e High limit exceeded

SM Version 1.4 32 14 Series

PLC Concepts

e Low limit exceeded

e Wire break

Hardware interrupts trigger the execution of Hardware Interrupt OB if it exists. If the OB does not exist,
then the CPU ignores the error. No Hardware Interrupt OB is present when you create a new project. If desired,
you add a Hardware Interrupt OB to your project by double-clicking "Add new block" under "Program blocks" in

the tree, then choose "Organization block", and then " Hardware Interrupt ".

SM Version 1.4 33 14 Series

PLC Concepts

1.4 CPU memory
The CPU provides the following memory areas to store the user program, data, and configuration:

e Load memory is non-volatile storage for the user program, data and configuration. When a project is
downloaded to the CPU, it is first stored in the Load memory area. This area is located either in a
memory card (if present) or in the CPU. This non-volatile memory area is maintained through a power
loss.

e Application memory is volatile storage for some elements of the user project while executing the user
program. The CPU copies some elements of the project from load memory into work memory. This
volatile area is lost when power is removed, and is restored by the CPU when power is restored.

¢ Retentive memory is non-volatile storage for a limited quantity of application memory values. The
retentive memory area is used to store the values of selected user memory locations during power loss.
When a power down or power loss occurs, the CPU restores these retentive values upon power up.

1.4.1 Retentive memory

Data loss after power failure can be avoided by marking certain data as retentive in any “Global Tag Table”. To
see how much is available for a specified CPU, refer to its technical data.

IS| Fie Edit View Device Tools Window Help - Intelart Studio
Al - B AR M il X N D i@ _igh_ # GoOnline Go Offline Warm Start ~ .
Plant Explorer 1 x| & Devices & Networks 42 145X £F Main £ Periodicinterrupt @ Online & Diagnostict [cp310 [i1] External TagTable ¥ Default TagTable® X
ol = s e
[SamplePlant ™ Name DataType DefaultValue Retain Comment
%9 Add New Device ~ Static

& Devices 8 Networks
4 g SO0k
o Device Configuration
Q5 Online & Diagnestic
& Watch & Force List

BottleCount Int 5 Vv

v em> b

gl

i

4 [PICTags
b g User DataTypes

h Add New External Table
9 Add New Global Table
% Default TagTable
[External TagTable
[M CPU Registers

bl Program Blocks

Figure 4-2 Mark a tag as retain

15 Time of day clock

The CPU supports a time-of-day clock. A built-in lithium battery supplies the energy required to keep the clock
running during times when the CPU is powered down. The battery does not discharge while the CPU has power.
Typically, the battery has sufficient charge to keep the clock and retentive area running for typically 5 years.

To utilize the time-of-day clock, you must set it. Timestamps such as those for diagnostic information, data log
files, and data log entries are based on the system time. You set the time of day from the "Set time" function in
the "Online & diagnostics" view of the online CPU. Intelart Studio then calculates the system time from the time
you set plus or minus the Windows operating system offset from UTC (Coordinated Universal Time). Setting the
time of day to the current local time produces a system time of UTC if your Windows operating system settings
for time zone and daylight savings time correspond to your locale.

14 PLC includes instructions to read and write the system time (GET_SYS_DT and SET_SYS_DT), to read the
date time and to set the date time.

1.6 Configuring the outputs on a RUN-to-STOP transition

You can configure the behavior of the digital and analog outputs when the CPU is in STOP mode. For any output
of a CPU or expansion module you can set the outputs to either freeze the value or use a substitute value:

e Substituting a specified output value (default): You enter a substitute value for each output (channel) of
that CPU or expansion module. The default substitute value for digital output channels is OFF, and the
default substitute
value for analog output channels is 0.

e Freezing the outputs to remain in last state: The outputs retain their current value at the time of the
transition from RUN to STOP. After power up, the outputs are set to the default substitute value.

SM Version 1.4 34 14 Series

PLC Concepts

You configure the behavior of the outputs in Device Configuration. Select the individual devices and use the
"Properties" pane to configure the outputs for each device. When the CPU changes from RUN to STOP, the CPU
retains the process image and writes the appropriate values for both the digital and analog outputs, based upon

the configuration.

Plant Explorer

&3 Devices & Networks

aa
SamplePlant
%9 Add New Device
2 Devics & Networks
4 jj MSX00x
J Device Configuration
3 Online & Diagnostic
&» Watch & Force List
4 [PLCTags
b [& User DataTypes
#9 Add New External Table
%9 Add New Global Table
up Default TagTable
[M External TagTable
M0 CPU_Registers
4 |-l Program Blocks

m Name : |{CP310
Type : CP310

Arrangement : Category

Infarmation

Configuration

Input 0

Input 1

Input 2

Input 3-12

4w w v v | wlw

Output 0
DQ0.ARrmateFunction Mane
DQ0.Stophction Shut Down

b Output 1

b Output2 Keep Last Value

b Output 3-15 Output 1

Figure 4-3 Choosing Stop Action for an output channel

F 145004 T Main T Periodicintern

SM Version 1.4

35

14 Series

PLC Concepts

2. Data storage, memory areas, I/O and addressing

2.1 Accessing the data of the 14 PLC

Intelart Studio facilitates symbolic programming. You create symbolic names or “tags” for the addresses of the
data, whether as PLC tags relating to memory addresses and I/O points or as local variables used within a code
block. To use these tags in your user program, simply enter the tag name for the instruction parameter.

For a better understanding of how the CPU structures and addresses the memory areas, the following
paragraphs explain the “absolute” addressing that is referenced by the PLC tags.
The CPU provides several options for storing data during the execution of the user program:

Global memory: The CPU provides a variety of specialized memory areas, including inputs (1), outputs
(Q), reference memory (G) and bit memory (M). This memory is accessible by all code blocks without
restriction

PLC tag table: You can enter symbolic names in the Intelart Studio PLC tag table for specific memory
locations. These tags are global to all program blocks and allow programming with names that are
meaningful for your application

Temp memory: Whenever a code block is called, the operating system of the CPU allocates the
temporary, or local, memory (L) to be used during the execution of the block. When the execution of the
code block finishes, the CPU reallocates the local memory for the execution of other code blocks.

Static Memory: Whenever a code block is called, the operating system of the CPU allocates the static
local, memory (N) to be used during the execution of the block. But when the execution of the code
block finishes, the CPU does not reallocate the static memory for the execution of other code blocks so
its vale will be fixed until the next execution of that code block.

Each different memory location has a unique address. Your user program uses these addresses to access the
information in the memory location. References to the input (I) or output (Q) memory areas, such as 10.2.4 or
Q2.1.7, access the process image.

Table 4-1 Memory areas

Memory Area Description Force Retentive
I: Process Image Input Copied from physical inputs at the beginning of the scan No No
cycle

Q: Process Image output | Copied to physical outputs at the end of the scan cycle Yes No

M: Bit Memory Control and data memory Yes No

L: Temp Memory Temporary data for a block local to that block No No

G: Reference Memory Control and data memory Yes Yes

S: Special Memory CPU monitoring and control registers No No

Each different memory location has a unique address. Your user program uses these addresses to access the
information in the memory location. The absolute address consists of the following elements:

e Memory area identifier (such as I, Q, or M)
e Size of the data to be accessed (“B” for Byte, “W” for Word, or “D” for DWord)
e Starting address of the data (such as byte 3 or word 3)

When accessing a bit in the address for a Boolean value, you do not enter a mnemonic for the size. You enter
only the memory area, the byte location, and the bit location for the data (such as 10.0, Q0.1, or M3.4).

SM Version 1.4 36 14 Series

PLC Concepts

M 3 . 4
A B CD
o
=
N
|| o -
N
(6]
7 6 5 4 3 210
F
Memory area identifier E Bytes of the memory area
Byte address: byte 3 F Bits of the selected byte

Separator (“byte.bit”)
Bit location of the byte (bit 4 of 8)

oo0Ow>»

In the example, the memory area and byte address (M = bit memory area, and 3 = Byte 3) are followed by a

period (“.”) to separate the bit address (bit 4).

211 Accessing the data in the memory areas of the CPU

Intelart Studio facilitates symbolic programming. Typically, tags are created either in PLC tags or in the interface
at the top of an OB, FC, or FB. These tags include a name, data type, address, and comment. Additionally, in a
reference tag table, a default value or retentive can be specified. You can use these tags when programming by
entering the tag name at the instruction parameter. Optionally you can enter the absolute operand (memory area,
size and offset) at the instruction parameter. The examples in the following sections show how to enter absolute
operands. A % character must be inserted in front of the absolute operand in the program editor.

| (process image input): The CPU samples the peripheral (physical) input points just prior to the OB execution
of each scan cycle and writes these values to the input process image. You can access the input process image
as bits, bytes, words, or double words. Both read and write access is permitted, but typically, process image
inputs are only read.

Table 4-2 Absolute addressing for | memory

Bit I[physical module address].[byte 11.0.1
address].[bit address]

Byte, Word, or Double Word I[physical module address]. 1B0.4, IW2.5, or ID18.12
[size][starting byte address]

Q (process image output): The CPU copies the values stored in the output process image to the physical output
points. You can access the output process image in bits, bytes, words, or double words. Both read and write
access is permitted for process image outputs.

Table 4-3 Absolute addressing for Q memory

Bit Q[physical module address]. [byte | Q0.1.1
address].[bit address]

Byte, Word, or Double word Q[physical module address]. QB4.5, QW1.10, QDO0.40
[size][starting byte address]

M (bit memory area): Use the bit memory area (M memory) for both control relays and data to store the
intermediate status of an operation or other control information. You can access the bit memory area in bits,
bytes, words, or double words. Both read and write access is permitted for M memory.

Bit M[byte address].[bit address] M18.7
Byte, Word, or Double word M[size][starting byte address] MB5, MW11, MD90

SM Version 1.4 37 14 Series

PLC Concepts

Temp (temporary memory): The CPU allocates the temp memory on an as-needed basis. The CPU allocates
the temp memory for the code block at the time when the code block is called (for an FC or FB). The allocation of
temp memory for a code block might reuse the same temp memory locations previously used by a different FC or
FB. The CPU can initialize the temp memory at the time of allocation and therefore the temp memory can start by
a specified value.

Temp memory is similar to M memory with one major exception: M memory has a "global" scope, and temp
memory has a "local" scope:

o M memory: Any OB, FC, or FB can access the data in M memory, meaning that the data is available globally
for all of the elements of the user program.

e Temp memory: Access to the data in temp memory is restricted to the FC, or FB that created or declared the
temp memory location. Temp memory locations remain local and are not shared by different code blocks, even
when the code block calls another code block. For example: When an FB calls an FC, the FC cannot access the
temp memory of the FB that called it.

You access temp memory by symbolic addressing only.

Static (fixed memory): The CPU allocates the static memory on an as-needed basis for OBs and on creation for
FBs. The CPU allocates the static memory for the code block at the time when the code block is called (for an
OB). The allocation of static memory for a code block might reuse a temp memory location previously used by a
different FC or FB. The CPU can initialize the static memory at the time of allocation and therefore the static
memory can start by a specified value. The static memory does not reallocate after allocation by CPU. So its
value always is fixed until a change by user program.

Static memory is similar to M memory with one major exception: M memory has a "global" scope, and Static
memory has a "local" scope:

e M memory: Any OB, FC, or FB can access the data in M memory, meaning that the data is available globally
for all of the elements of the user program.

e Static memory: Access to the data in static memory is restricted to the OB, or FB that created or declared the
temp memory location. Temp memory locations remain local and are not shared by different code blocks, even
when the code block calls another code block. For example: When an OB calls an FC, the FC cannot access the
temp memory of the OB that called it.

You access static memory by symbolic addressing only.

G (reference memory area): Use the reference memory area (G memory) for both control relays and data to
store the intermediate status of an operation or other control information. Also Use the G memory for storing
various types of data, including intermediate status of an operation or other control information parameters for
FBs, and data structures required for many instructions such as timers and counters. You access reference
memory by symbolic addressing only. You can mark a reference tag as “Retain” so its value will be retentive after
CPU power off.

2.2 Configuring the I/O in the CPU and I/O modules

When you add a CPU and I/0 modules to your configuration screen, | and Q addresses are automatically
assigned. There is a tool for mapping | and Q addresses to a symbolic tags in an external tag table. See section
25.8 for more info.

Digital inputs and outputs are assigned in groups of 8 points (1 byte) and 16 points (1 word), whether the module
uses all the points or not.

Analog inputs and outputs are assigned separately in real values (4 bytes)

SM Version 1.4 38 14 Series

PLC Concepts

Figure 4-4 An example of a CPU CP310 with two expansion modules

SM Version 1.4 39 14 Series

PLC Concepts

3. Processing of analog values

Analog expansion modules provide input signals or expect output values that represent either a voltage range or
a current range. These ranges are +10V, 0 - 10V, or 0 - 24mA or other special analog signals. The values
returned by the modules are float (REAL) values having the exact value analog value. There is no need for
conversion any word or integer to calculate real analog value. Anything outside the allowed range (overflow or
underflow) will have a specific value. For each analog expansion module see its technical data for more info.

In your control program, you probably need to use these values in engineering units, for example to represent a
volume, temperature, weight or other quantitative value. To do this for an analog input, you must normalize and
scale the analog value to the minimum and maximum values of the engineering units that it represents. For
values that are in engineering units that you need to convert to an analog output value, you normalize and scale
value in engineering units to a value within £10V, 0 - 10V, or 0 - 24mA, depending on the range of the analog
module. Intelart Studio provides the “SCP_NORM” instruction in order to normalize and scale a numeric range to
another range.

Q TIP

When you use Temperature expansion modules you don’t need to any conversion. The real tag values
indicate the actual temperature by the module configuration. Just use its tag values in your program.

Q TIP

In case you use Loadcell expansion modules you can use “WEIGH” instruction in order to execute a complete
weighing system for calibrating and calculating actual weight or force value.

SM Version 1.4 40 14 Series

PLC Concepts

4., Data types

Data types are used to specify both the size of a data element as well as how the data are to be interpreted.
Each instruction parameter supports at least one data type, and some parameters support multiple data types.
Hold the cursor over the parameter field of an instruction to see which data types are supported for a given
parameter.

A formal parameter is the identifier on an instruction that marks the location of data to be used by that instruction
(example: the IN1 input of an ADD instruction). An actual parameter is the memory location (preceded by a "%"
character) or constant containing the data to be used by the instruction (example %MD400
"Number_of_Widgets"). The data type of the actual parameter specified by you must match one of the supported
data types of the formal parameter specified by the instruction.

When specifying an actual parameter, you must specify either a tag (symbol) or an absolute (direct) memory
address. Tags associate a symbolic name (tag name) with a data type, memory area, memory offset, and
comment, and can be created either in the PLC tags editor or in the Interface editor for a block (OB, FC and FB).
If you enter an absolute address that has no associated tag, you must use an appropriate size that matches a
supported data type, and a default tag will be created upon entry.

All data types are available in the PLC tags editor and the block Interface editors based on their scope. You can
also enter a constant value for many of the input parameters.

e Bit and Bit sequences: Bool (Boolean or bit value), Byte (8-bit byte value), Word (16-bit value) , DWord
(32-bit double-word value) , LWord (64-bit long-word value)

e Integer: USInt (unsigned 8-bit integer), Sint (signed 8-bit integer), Ulnt (unsigned 16-bit integer), Int
(signed 16-bit integer) , UDInt (unsigned 32-bit integer), Dint (signed 32-bit integer) , ULInt (unsigned
64-bit integer), Lint (signed 64-bit integer)

e Floating-point Real: Real (32-bit Real or floating-point value), LReal (64-bit Real or floating-point value)

e Time and Date: Time (32-bit IEC time value), Date (32-bit IEC date value), TOD (32-bit IEC time-off-day
value), DT (64-bit IEC date-and-time value)

e Character and String: Char (8-bit single character), String (64 byte-length string)
e Array

e Data structure: Struct

e PLC Datatype

e Pointers: Any, Variant

Although not available as data types, the following BCD numeric format is supported by the conversion
instructions.

Table 4-4 Size and range of the BCD format

Format Size (bits) Numeric Range Constant Entry Examples
BCD16 16 -999 to 999 123, -123
BCD32 32 -9999999 to 9999999 1234567, -1234567

SM Version 1.4 41 14 Series

PLC Concepts

4.1

Table 4-5 Bit and bit sequence data types

Bool, Byte, Word, DWord and LWord data types

Data Bit Number type Number range Constant examples Address
type size examples
Bool 1 Boolean FALSE or TRUE True, False %I1.1.0,
Binary Oor1l ?;OI\QA:;(??:L
(] A,
Octal - 8#0 or 8#1 Structl.Tag2.3
Hexadecimal 16#0 or 16#1 TagName
Byte 8 Binary 2#0to 2#11111111 2#00001111 %IB0.2,
Unsigned integer | 0 to 255 18 MB10,
FB1.Tag4,
Octal 8#0 to 8#377 8#17
- TagName
Hexadecimal 16#0 to 16#FF 16#F
Word 16 Binary 2#010 2#1111111111111111 | 2#111100001111000 | %MW10,
0 FB1.Tag2,
Unsigned integer | 0 to 65535 18370 TagName
Octal 8#0 to 8#177777 8#170360
Hexadecimal 16#0 to 16#FFFF 16#FOFO0
DWord | 32 Binary 2#0 to 2#111100001111111 | %MD10,
2#1111111111111111111211 | 100001111 FB1.Tags,
1111111111 TagName
Unsigned integer | 0 to 4294967295 15793935
Octal 8#0 to 8#37777777777 8#74177417
Hexadecimal 16#0 to 16#FFFFFFFF 16#FOFFOF
LWord | 64 Binary 2#0 to 2#111100001111111 | %M1024.0,
2#111111111121121211211211 | 11211211211211211 | Struct3.Lword
11112111211122122122122112 | 11112110011111111 | 2,
11111111112212112111 111111112111100 TagName
Unsigned integer | 18446744073709551615 17446744063709551
614
Octal 8#0 to 8#176777748775777
8HL7TTTI77I7777777777777 | 7727777
Hexadecimal 16#0 to 16#FABFFF12FFFFF
16#FFFFFFFFFFFFFFFF 37F

Table 4-6 Bit and bit sequence default value

Data type Default value
Bool False
Byte, Word, DWord, LWord 16#0

4.2

Integer data types

Table 4-7 Integer data types (U= unsigned, S= short, D= double, L= Long)

Data type Bit size | Number range Constant Examples Address examples

USint 8 0to 255 78, 2#01001110 %MBO, FB1.B4,

Sint 8 -128 to 127 +50, 16#50 TagName

Ulnt 16 0 to 65,535 65295, 0 %MW2, FB1.Tag2,

Int 16 -32,768 to 32,767 30000, +30000 TagName

UDInt 32 0 to 4,294,967,295 4042322160 %MD6, FB1.DBDS,

Dint 32 -2,147,483,648 to -2131754992 TagName
2,147,483,647

ULInt 64 0 to 18446744073709551615 | 4294977295 %M20.0, FB1.Tag2,

Lint 64 -9223372036854775808 to -2347483648 TagName
9223372036854775807

SM Version 1.4 42 14 Series

PLC Concepts

Table 4-8 Integer default values

Data type Default value
USint, Sint, Ulnt, Int, UDInt, DInt, ULInt, Lint 0

4.3 Floating-point real data types

Real (or floating-point) numbers are represented as 32-bit single-precision numbers (Real), or 64-bit double-
precision numbers (LReal) as described in the ANSI/IEEE 754-1985 standard. Single-precision floating-point
numbers are accurate up to 6 significant digits and double-precision floating point numbers are accurate up to 15
significant digits. You can specify a maximum of 6 significant digits (Real) or 15 (LReal) when entering a floating-
point constant to maintain precision.

Table 4-9 Floating-point real data types (L=Long)

Data type | Bit Number range Constant Examples Address examples
size
Real 32 -3.402823e+38 t0 -1.175 495e-38, 123.456, -3.4, 1.0e-5 %MDO, FB1.R4,
=0, TagName
+1.175 495e-38 to +3.402823e+38
LReal 64 -1.7976931348623158e+308 to 12345.123456789e40, | %M12.0, FB1.R4,
-2.2250738585072014e-308, 0, 1.2E+40 TagName

+2.2250738585072014e-308 to
+1.7976931348623158e+308

Table 4-10 Floating-point real default values

Data type Default value
Real, LReal 0.0
Q TP

Calculations that involve a long series of values including very large and very small numbers can produce
inaccurate results. This can occur if the numbers differ by 10 to the power of x, where x > 6 (Real), or 15
(LReal). For example (Real): 100 000 000 + 1 = 100 000 000.

4.4 Time and Date data types

Table 4-11 Time and date data types

Data type Bit Range Constant Examples Address examples
size
Time 32 T#-596h31m23s648ms to T#5m30s %MDO, FB1.T4,
T#-596h31m23s647ms T#332h15m30s45ms | TagName
Date D#1970-01-01 to D#2106-02-07 D#1992-02-07 %M12.0, FB1.R4,
TimeOfDay TOD#00:00:00 to TOD#23:59:59 | TOD#10:20:30 TagName
DateTime DT#1970-01-01-00:00:00 to D#1992-02-07-
DT#2106-02-07-23:59:59 03:28:11

Table 4-12 Time and date default values

Data type Default value

Time T#0ms

Date D#1970-01-01

TimeOfDay TOD#00:00:00

DateTime DT#1970-01-01-00:00:00
4.4.1 Time

TIME data is stored as a signed double integer interpreted as milliseconds. The editor format can use information
for hours (h), minutes (m), seconds (s) and milliseconds (ms). It is not necessary to specify all units of time. For

SM Version 1.4 43 14 Series

PLC Concepts

example, T#5h10s is valid.

The combined value of all specified unit values cannot exceed the upper or lower limits in milliseconds for the
Time data type (-2,147,483,648 ms to +2,147,483,647 ms).

4.4.2 Date

DATE data is stored as an unsigned integer value which is interpreted as the number of seconds added to the
base date 01/01/1970, to obtain the specified date. The editor format must specify a year, month and day.
443 TOD

TOD (Time of Day) data is stored as an unsigned double integer which is interpreted as the number of seconds
since midnight for the specified time of day (Midnight = 0 s). The hour (24hr/day), minute, and second must be
specified.

4.4.4 DT

DT (Date and Time) data is stored as an unsigned integer value which is interpreted as the number of seconds
added to the base date time 01/01/1970 00:00:00. The editor format must specify a year, month, day, hour,
minute and second.

4.5 Character and String data types

Table 4-13 Character and String data types

Data type | Bit size Range Constant Examples Address examples
Char 8 ASCII character codes: 16#00 ‘ALY'@' %MB9, FB1.R4,
to 16#FF TagName
String 64*8 64 bytes string “ABC” %M10.0, FB1.R4,
(64 bytes) TagName

Table 4-14 Character and String default values

Data type Default value
Char "
String

45.1 Char

Char data occupies one byte in memory and stores a single character coded in ASCII format. The editor syntax
uses a single quote character before and after the ASCII character. Visible characters and control characters can
be used. A table of valid control characters is shown in the description of the String data type.

45.2 String

The CPU supports the String data type for storing a sequence of single-byte characters. The String type provides
64 bytes for storing the characters.

You can use literal strings (constants) for instruction parameters of type IN using double quotes. For example,
“ABC” is a three-character string that could be used as input for parameter IN of the LEN instruction. You can
also create string variables by selecting data type "String" in the block interface editors for OB, FC, FB, and other
PLC tags editor.

The following example defines a String with maximum character count of 10 and current character count of 3.
This means the String currently contains 3 one-byte characters, but could be expanded to contain up to 10 one-
byte characters.

ASCII control characters can be used in Char and String data. The following table shows examples of control
character syntax.

Table 4-15 Valid ASCII control characters

Control characters | ASCIl Hex value | Control function Examples
$$ 24 Dollar sign “100%$%”, “100%$24”
$ 27 Single quote “$'Text$”,"$27Text$27”

SM Version 1.4 44 14 Series

PLC Concepts

$N or $n 0A Line break “BNText”, “S0A$0DText”
$R or $r oD Carriage return (CR) “$RText”,"$0DText”
$T or $t 09 Tab “$TText”, “$09Text”

SM Version 1.4 45 14 Series

PLC Concepts

4.6 Array data type

You can create an array that contains multiple elements of the same data type. Arrays can be created in the
block interface editors for OB, FC, FB, and other PLC tags editor.

To create an array from the block interface editor, name the array and choose data type type[length], then edit
“‘length” and “type” as follows:

e Type: one of the data types, such as BOOL, SINT, UDINT
e Length: the length for your array

Table 4-16 ARRAY data type rules

Data type Rules

Array <data type>[length1,length2,...]
e All array elements must be the same data type.
e The index must be greater than or equal to 0.
e Arrays can have one to six dimensions.
e Multi-dimensional index declarations are separated by comma characters.
e Nested arrays, or arrays of arrays, are not allowed.
¢ The memory size of an array = (size of one element * total number of
elements in array)

Array index Valid index data types | Array index rules

Constant or USint, Sint, Ulint, Int, e Value limits: 0 to 32767

variable UDint, Dint e Valid: Mixed constants and
variables

e Valid: Constant expressions
¢ Not valid: Variable
expressions

Example: array declarations Real[20] One dimension, 20 elements
Int[11] One dimension, 11 elements
String[2,3] Two dimension, 6 elements

Example: array addresses ARRAY1[0] ARRAY1 element 0
ARRAY2[1,2] ARRAY2 element [1,2]
ARRAY3[i,j] If i =3 and j=4, then ARRAY3

element[3, 4] is addressed

4.7 Data structure data type

You can use the data type "Struct" to define a structure of data consisting of other data types. The struct data
type can be used to handle a group of related process data as a single data unit. A Struct data type is named and
the internal data structure declared in the data block editor or a block interface editor.

Arrays and structures can also be assembled into a larger structure. For example, you can create a structure of
structures that contain arrays.

A Struct variable begins at an aligned-byte address based on CPU structure (usually 4-byte aligned).

4.8 User data type

The User data type editor lets you define data structures that you can use multiple times in your program. You
create a user data type by opening the "User data types" branch of the project tree and double-clicking the "Add
new user data type" item. On the newly created user data type item, use two single-clicks to rename the default
name and double-click to open the user data type editor.

You create a custom user data type structure using the same editing methods that are used in the tag table
editor. Add new rows for any data types that are necessary to create the data structure that you want.

If a new user data type is created and its interfaced updated (by clicking on “Update Interface” toolbar button in
user data type editor), then the new user type name will appear in the data type selector drop drop-lists in the tag
tables editor and code block interface editor.

SM Version 1.4 46 14 Series

PLC Concepts

Potential uses of user data types:
e User data types can be used directly as a data type in a code block interface or in tag tables editor

e User data types can be used as a template for the creation of multiple global data blocks that use the
same data structure. For example, a user data type could be a recipe for mixing colors. You can then
assign this user data type to multiple tag editors. Each tag editor can then have the variables adjusted to
create a specific color.

4.9 Pointer data types

The pointer data types (Any and Variant) can be used in the block interface tables for FB and FC code blocks.
You can select a pointer data type from the block interface data type drop-lists.

The Variant data type is also used for instruction parameters.

49.1 "Any" pointer data type

The pointer data type ANY ("Any") Only is available for the input / output/ in-out variables of system-defined
Program Organization Units (POUSs).

The Any pointer does not occupy any space in memory

4.9.2 "Variant" pointer data type

The data type Variant is a pointer to variables of different data types or parameters. The Variant pointer can point
to structures and individual structural components.

The Variant pointer does not occupy any space in memory.

The following diagram shows the structure of all PLC data types:

Variant
I
[I I]
System User Data
Any Struct FB Type
[I ' I I]
AnyBit AnyNum AnyDuration AnyDate AnyChar
['] L
— Bool AnylInt AnyReal Time —TimeOfDay| Char
[:]
— Byte AnyUnsigned AnySigned Real — Date String
— Word — USInt — Sint LReal — DateTime

— DWord — Ulnt — Int
— LWord — UDInt — Dint
— ULInt — Lint

Figure 4-5 PLC data types diagram

SM Version 1.4 47 14 Series

PLC Concepts

SM Version 1.4 48 14 Series

Device Configuration

Device Configuration

You create the device configuration for your PLC by adding a CPU and additional modules to your project.

2 é) ~
) 5 oF
& CPU S S
4 5
Expansion
Modules

To create the device configuration, add a device to your project.

IS| Ffile Edit View Device Tools Window Help
1- Inthe Plant Explorer pane double-click on “Add - B R O-C- XA E N iy

New Device” or “Devices & Networks”.
Plant Explorer

SE &

SamplePlant

e@ Add New Device

&L Devices & Networks
b OEl 48X

SM Version 1.4 49 14 Series

Device Configuration

2- In the Catalog pane double-click on a device or drag and drop — w0
it on the “Devices & Networks” editor.

Networks” editor. Also, in the Plant Explorer pane the device

3- A schematic of device will be added on the “Devices & . Catalog
will be appeared. o

SRS _

B [T Rack PLC

4- Double click on the device schematic or on the “Device y s
Configuration” in the Plant Explorer pane. =
| S0
5- You can drag and drop a CPU or an expansion module on the b [my HMC

slots of the rail or double-click on it in the Catalog pane.

IS] File Edit View Device Tools Window Help

R SO XIS XE DD i it _f GoOnline ¥ GoOff
Plant Explorer & Devices & Networks ¢ [kl
a4 |
SamplePlant 14530
#9 Add Mew Device Device : =
; Devices & Metwarks I4SKRe EE
4 g 145000

J Device Configuration
g Local Modules

SM Version 1.4 50 14 Series

Device Configuration

1. Inserting a CPU

You create your device configuration by inserting a CPU into your project. Be sure you insert the correct model
from the list. Select the CPU from the Catalog pane.

8 Fie dit Vew Devce Tool: Window Help elart Stud - o x

0 e
0 e
4 1 MO
0 et
0 e
0 s
0 mest

o 1 2 3 4] 6 7 [0 s
0 sl

- - .

CP310

Braguammable Loge Contraller Deviee
Processor: ARM Cortex M7

Stats: 63 IM3XX series

Comm Ports : IS-485 / AS-232 / Ethernet
PG Port - Ethermet

Figure 5-1 Inserting a CPU into the rail

Selecting the CPU in the 2
Device view displays the CPU &
properties in the Properties ; :
pane.
CP310
Name : [CP310 =
m Type: CP310 m o iiees senin INTELART]

Arrangement : Category -

Infarmation

Configuration

»

»

b Input0
b Inputl
b Input2
P Input3-12
»
»
»
»

01234567 B9 0DURIKS
B2

Qutput 0
Output 1
Qutput 2
Qutput 3-15

NOTICE

The CPU has a pre-configured IP address 192.168.1.100. If your network does not support the default IP
address You must manually assign an IP address for the CPU during the device configuration. If your CPU is
connected by a serial protocol (such as USB), you may find the CPU COM port name in your device manager
COM ports list.

If Intelart Studio does not find your 14 PLC, a Programmer Configuration dialog will be appeared in order to
change the PG port parameters or search for available devices on a network.

SM Version 1.4 51 14 Series

Device Configuration

Device Programmer Configuration

IP Address : | 192.168.1.100

Device Model Address Hardware Version Firmware Version

=]

3P Search Network

Serial Number

€ Cancel

X

Figure 5-2 Programmer Configuration dialog

2. Adding modules to the configuration

Use the Catalog pane to add modules to the CPU:

Expansion module provides additional digital or analog I/O points. These modules are connected to the right side
of the CPU. To insert a module into the device configuration, select the module in the Catalog pane and either
double-click or drag the module to the highlighted slot. You must add the modules to the device configuration and

download the hardware configuration to the CPU for the modules to be functional.

Table 5-1 Adding a module to the device configuration

Select the module

Insert the module

Result

== 1 x| &

A/ @ g R

> §g CPU

4 |j DIO
g im0 e

0 m330
b g AD

INTELART]

3. Configuring the operation of the CPU

To configure the operational parameters for the CPU, select the CPU in the Device view (blue outline around
whole CPU), and use the Properties pane in order to change configurations.

INTELARTHE

INTELART]

To configure input filter times, select an individual or grouped inputs. The default filter time for the digital inputs is

0 ms.

SM Version 1.4

52

14 Series

Device Configuration

Properties

Arrangement : Category
P Information

» Configuration

* InputQ

DI0.InputDelay 0
DIO.AltmateFunction 0k
b Inputi 3

b Input2 7

b Input3-12 15

» Output0 30

b Output 1 50

P Output2 100

» Output 3-15

Co,

2 % cpato
o

POWER

INTEL ARTRRC INTELART

AN o
FAULT 01234567 8 omiR 01234587

1M300
WARM START Digital Tnput
Digital Queput
Modue

- ms

01234567 89 0UIZOMS 01234567
og oQ

Figure 5-3 Changing CPU configuration

Property

Description

DI, DO, and Al

High-speed counters
and pulse generators

BindedSerialNumber

Password

Configures the behavior of the local (on-board) digital and analog I/O (for example,
digital input filter times and digital output reaction to a CPU stop).

Enables and configures the high-speed counters (HSC) and the pulse generators
used for

pulse-train operations (PTO), Frequency Out operations (FOO) and pulse-width
modulation (PWM)

When you configure the outputs of the CPU as pulse generators (for use with the
PWM or motion control instructions), the corresponding output addresses (QO0.0,
Q0.1,...) are removed from the Q memory and cannot be used for other purposes in
your user program. If your user program writes a value to an output used as a pulse
generator, the CPU does not write that value to the physical output.

You can bind the CPU to a specific serial number so the program will be compiled
only for that specific serial number. A CPU with a different serial number will not be
programmed by the Intelart Studio.

When a CPU is password protected, you must specify the password by this
property in order to going online and programming the device.

4. Configuring the parameters of the modules

To configure the operational parameters for the modules, select the
module in the Device view and use the Properties pane of the inspector
window to configure the parameters for the module.

o Digital I/0: Some inputs can be configured for alternate functions =~ puto

based on their type and structure. See technical data in order to | PP 2 i
. . DI0.AltrnateFunction Nene -

know the module configuration. v put
Di.InputDelay 0 T ms

e Analog I/O: For individual inputs, configure parameters, such as
measurement type (voltage or current), range and smoothing, b inputz-7
and to enable underflow or overflow diagnostics. Analog outputs
provide parameters such as output type (voltage or current) and
for diagnostics, such as short-circuit (for voltage outputs) or

Properties. ax
Name : | IM300
I] Type : IM300
Arrangement : Category e

» Information

DI1.AltrnateFunction Nene -

¥ Output0-3
DQ0.AlrnateFunction Nene -

DQO.Stophction Shut Down =

DQ1.AltrnateFunction Nene =

upper/lower limit diagnostics. You can configure ranges of
analog inputs and outputs in engineering units on the Properties dialog.

Figure 5-4 Configuring an expansion module

SM Version 1.4

53 14 Series

Device Configuration

4.1

41.1

Assigning Internet Protocol (IP) addresses

Assigning IP addresses to programming and network devices

If your programming device is using an on-board adapter card connected to your plant LAN (and possibly the
world-wide web), the IP Address Network ID and subnet mask of your CPU and the programming device's on-
board adapter card must be exactly the same. The Network ID is the first part of the IP address (first three octets)
(for example, 211.154.184.16) that determines what IP network you are on. The subnet mask normally has a
value of 255.255.255.0; however, since your computer is on a plant LAN, the subnet mask may have various
values (for example, 255.255.254.0) in order to set up unique subnets. The subnet mask, when combined with
the device IP address in a mathematical AND operation, defines the boundaries of an IP subnet.

NOTICE

your IP addresses.

In a world-wide web scenario, where your programming devices, network devices, and IP routers will
communicate with the world, unique IP addresses must be assigned to avoid conflict with other network users.
Contact your company IT department personnel, who are familiar with your plant networks, for assignment of

If your programming device is using an Ethernet-to-USB adapter card connected to an isolated network, the IP
Address Network ID and subnet mask of your CPU and the programming device's Ethernet-to-USB adapter card
must be exactly the same. The Network ID is the first part of the IP address (first three octets) (for example,
211.154.184.16) that determines what IP network you are on. The subnet mask normally has a value of
255.255.255.0. The subnet mask, when combined with the device IP address in a mathematical AND operation,
defines the boundaries of an IP subnet.

NOTICE

An Ethernet-to-USB adapter card is useful when you do not want your CPU on your company LAN. During
initial testing or commissioning tests, this arrangement is particularly useful.

Programming
Device Adapter
Card

Network Type

Internet Protocol (IP) Address

Subnet Mask

On-board adapter
card

Connected to
your plant LAN
(and possibly
the world-wide
web)

Network ID of your CPU and
the programming device's on-
board adapter card must be
exactly the same.

The Network ID is the first part
of the IP address (first three
octets) (for example,
211.154.184.16) that
determines what IP network
you are on.)

The subnet mask of your CPU and
the on-board adapter card must be
exactly the same.

The subnet mask normally has a
value of 255.255.255.0; however,
since your computer is on a plant
LAN, the subnet mask may have
various values (for example,
255.255.254.0) in order to set up
unique subnets. The subnet mask,
when combined with the device IP
address in a mathematical AND
operation, defines the boundaries
of an IP subnet.

Ethernet-to-USB
adapter card

Connected to an
isolated network

Network ID of your CPU and
the programming device's
Ethernet-toUSB adapter card
must be exactly the same.

The Network ID is the first part
of the IP address (first three
octets) (for example,
211.154.184.16) that
determines what IP network
you are on.)

The subnet mask of your CPU and
the Ethernet-to-USB adapter card
must be exactly the same.

The subnet mask normally has a
value of 255.255.255.0. The subnet
mask, when combined with the
device IP address in a
mathematical AND operation,
defines the boundaries of an IP
subnet.

SM Version 1.4

54

14 Series

Device Configuration

4.1.2 Checking the IP address of your programming device
You can check the MAC and IP addresses of your programming device with the following menu selections:
1- Go online to device and in the Plant Explorer pane, double-click on "Online & diagnostic".

2- In the status tab The MAC and other device information are displayed.

4.1.3 Modifying an IP address to a CPU online

You can assign an IP address to a network device online.
1- Go online to device and in the Plant Explorer pane, double-click on "Online & diagnostic".
2- In the Options tab click on “Load” button in order to load the current device configurations.
3- You can change either “IP Address”, “subnet Mask” and “Gateway” fields.
4- By clicking on “Apply” button the current configuration will be transferred to de device.

5- In order to changes take effect, you must power off and the power on the device.

414 Configuring an IP address for a CPU in your project

IP address: Some CPUs have an Internet Protocol (IP) address. This address allows the device to deliver data
on a more complex, routed network.

Each IP address is divided into four 8-bit segments and is expressed in a dotted, decimal format (for example,
211.154.184.16). The first part of the IP address is used for the Network ID (What network are you on?), and the
second part of the address is for the Host ID (unique for each device on the network). An IP address of
192.168.x.y is a standard designation recognized as part of a private network that is not routed on the Internet.

Subnet mask: A subnet is a logical grouping of connected network devices. Nodes on a subnet tend to be
located in close physical proximity to each other on a Local Area Network (LAN). A mask (known as the subnet
mask or network mask) defines the boundaries of an IP subnet.

A subnet mask of 255.255.255.0 is generally suitable for a small local network. This means that all IP addresses
on this network should have the same first 3 octets, and the various devices on this network are identified by the
last octet (8-bit field). An example of this is to assign a subnet mask of 255.255.255.0 and an IP address of
192.168.2.0 through 192.168.2.255 to the devices on a small local network.

The only connection between different subnets is via a router. If subnets are used, an IP router must be
employed.

IP router: Routers are the link between LANs. Using a router, a computer in a LAN can send messages to any
other networks, which might have other LANs behind them. If the destination of the data is not within the LAN, the
router forwards the data to another network or group of networks where it can be delivered to its destination.

Routers rely on IP addresses to deliver and receive data packets.

IP addresses properties: In the Properties wWindow, [[§] fie it View Device Tools Window Helo

select the "IP" configuration entry. Intelart Studio Kl IR =M i % _} # GaOnline ¥ GoOffine
displays the Ethernet address property in Properties [EEca | = vovees o Newors [PEIESESH
pane, which associates the software project withthe 9 & 8
H H H A SamplePlant 14SXXXx
IP address of the CPU that will receive that project. " e —
L Devices & Netwarks [i¥ests EEE
4l 9006

J Device Configuration
t)§ Cnline & Diagnostic
6% Waich & Force List

b @ PLCTags

b g Program Blocks

b [f Local Modules

Properties 1 x

Name : Ethernet (PG) Selected
] Type : Ethemet Ethernet Port

Arrangement : Category -

¥ PG Configuration
1P 192.168.1.100

Figure 5-5 Assigning an IP for programming the CPU

SM Version 1.4 55 14 Series

Device Configuration

/\ WARNING

When changing the IP address of a CPU online or from the user program, it is possible to create a condition in
which the network may stop.

If the IP address of a CPU is changed to an IP address outside the subnet, the network will lose
communication, and all data exchange will stop. User equipment may be configured to keep running under
these conditions. Loss of communication may result in unexpected machine or process operations, causing
death, severe personal injury, or property damage if proper precautions are not taken.

If an IP address must be changed manually, ensure that the new IP address lies within the subnet.

SM Version 1.4 56 14 Series

Programming Concepts

Programming Concepts

In addition to the standard logical operations that a PLC can perform, seasoned PLC programmers are aware
that, by taking advantages of some of the unique features and characteristics of a PLC, some very powerful
operations can be performed. Some of these are operations that would be very difficult to realize in hardwired
relay logic, but are relatively simple in PLC ladder programs. The reader should not concentrate on memorizing
these concepts, but instead, learn how they work and how they can be best applied to solve programming
problems

SM Version 1.4 57 14 Series

Programming Concepts

1. Guidelines for designing a PLC system

When designing a PLC system, you can choose from a variety of methods and criteria. The following general
guidelines can apply to many design projects. Of course, you must follow the directives of your own company's
procedures and the accepted practices of your own training and location.

Table 6-1 Guidelines for designing a PLC system

Recommended | Tasks

steps

Partition your Divide your process or machine into sections that have a level of independence from each

process or other. These partitions determine the boundaries between controllers and influence the

machine functional description specifications and the assignment of resources.

Create the Write the descriptions of operation for each section of the process or machine, such as the

functional I/O points, the functional description of the operation, the states that must be achieved

specifications before allowing action for each actuator (such as a solenoid, a motor, or a drive), a
description of the operator interface, and any interfaces with other sections of the process
or machine.

Design the Identify any equipment that might require hard-wired logic for safety. Remember that

safety circuits

Plan system
security
Specify the
operator
stations

Create the
configuration
drawings

Create a list of
symbolic names

control devices can fail in an unsafe manner, which can produce unexpected startup or
change in the operation of machinery. Where unexpected or incorrect operation of the
machinery could result in physical injury to people or significant property damage, consider
the implementation of electromechanical overrides (which operate independently of the
PLC) to prevent unsafe operations. The following tasks should be included in the design of
safety circuits:

e Identify any improper or unexpected operation of actuators that could be

hazardous.

¢ Identify the conditions that would assure the operation is not hazardous, and

determine how to detect these conditions independently of the PLC.

e Identify how the PLC affects the process when power is applied and removed, and

also

¢ identify how and when errors are detected. Use this information only for designing

the normal and expected abnormal operation. You should not rely on this "best
case" scenario for safety purposes.

e Design the manual or electromechanical safety overrides that block the hazardous

operation independent of the PLC.

e Provide the appropriate status information from the independent circuits to the

PLC so that

e the program and any operator interfaces have necessary information.

e Identify any other safety-related requirements for safe operation of the process.
Determine what level of protection you require for access to your process. You can
password-protect CPUs and program blocks from unauthorized access.

Based on the requirements of the functional specifications, create the following drawings of
the operator stations:

e Overview drawing that shows the location of each operator station in relation to

the process

e or machine.

e Mechanical layout drawing of the devices for the operator station, such as display,

switches, and lights.

e Electrical drawings with the associated 1/0 of the PLC and signal modules.

Based on the requirements of the functional specification, create configuration drawings of
the control equipment:

e Overview drawing that shows the location of each PLC in relation to the process

or machine.

e Mechanical layout drawing of each PLC and any 1/0 modules, including any

cabinets and

e other equipment.

e Electrical drawings for each PLC and any I/O modules, including the device model

numbers, communications addresses, and I/O addresses.
Create a list of symbolic names for the absolute addresses. Include not only the physical
I/O signals, but also the other elements (such as tag names) to be used in your program.

SM Version 1.4

58 14 Series

Programming Concepts

2. Structuring your user program

When you create a user program for the automation tasks, you insert the instructions for the program into code
blocks:

e An organization block (OB) responds to a specific event in the CPU and can interrupt the execution of
the user program. The default for the cyclic execution of the user program (Default Main) provides the
base structure for your user program and is the only code block required for a user program. If you
include other OBs in your program, these OBs interrupt the execution of Main. The other OBs perform
specific functions, such as for startup tasks, for handling interrupts and errors, or for executing specific
program code at specific time intervals.

e A function block (FB) is a subroutine that is executed when called from another code block (OB, FB, or
FC). The calling block passes parameters to the FB and also identifies a specific data block instance
that stores the data for the specific call or instance of that FB. Changing the instance of FB allows a
generic FB to control the operation of a set of devices. For example, one FB can control several pumps
or valves, with different instance FBs containing the specific operational parameters for each pump or
valve.

e Afunction (FC) is a subroutine that is executed when called from another code block (OB, FB, or FC).
The FC does not have an associated instance data. The calling block passes parameters to the FC. The
output values from the FC must be written to a memory address or to a tag.

2.1 Choosing the type of structure for your user program

Based on the requirements of your application, you can choose either a linear structure or a modular structure for
creating your user program:

e Alinear program executes all of the instructions for your automation tasks in sequence, one after the
other. Typically, the linear program puts all of the program instructions into the OB for the cyclic
execution of the program (Main Cyclic Program).

e A modular program calls specific code blocks that perform specific tasks. To create a modular structure,
you divide the complex automation task into smaller subordinate tasks that correspond to the
technological functions of the process. Each code block provides the program segment for each
subordinate task. You structure your program by calling one of the code blocks from another block.

Linear structure: Modular structure:

OB | OB < FB 1

1 / FC 1

«— T

By creating generic code blocks that can be reused within the user program, you can simplify the design and
implementation of the user program. Using generic code blocks has a number of benefits:

e You can create reusable blocks of code for standard tasks, such as for controlling a pump or a motor.
You can also store these generic code blocks in a library that can be used by different applications or
solutions.

e When you structure the user program into modular components that relate to functional tasks, the
design of your program can be easier to understand and to manage. The modular components not only
help to standardize the program design, but can also help to make updating or modifying the program
code quicker and easier.

e Creating modular components simplifies the debugging of your program. By structuring the complete
program as a set of modular program segments, you can test the functionality of each code block as it is
developed.

e Creating modular components that relate to specific technological functions can help to simplify and
reduce the time involved with commissioning the completed application.

SM Version 1.4 59 14 Series

Programming Concepts

3. Using blocks to structure your program

By designing FBs and FCs to perform generic tasks, you create modular code blocks. You then structure your
program by having other code blocks call these reusable modules. The calling block passes device-specific
parameters to the called block.

When a code block calls another code block, the CPU executes the program code in the called block. After
execution of the called block is complete, the CPU resumes the execution of the calling block. Processing
continues with execution of the instruction that follows after the block call.

® ®
OB, FB, FC OB, FB, FC
® Calling block
@

Called (or interrupting) block
Program execution

Instruction or event that initiates the execution
of another block

@
Program execution
\/\/\/il \v Block end (returns to calling block)
@

You can nest the block calls for a more modular structure. In the following example, the nesting depth is 4: the
program cycle OB plus 3 layers of calls to code blocks.

®O O®C

® | @ |
—> » »
FB FC
FC FC FB
@ start of cycle
> ® Nesting depth
FB

SM Version 1.4 60 14 Series

Programming Concepts

3.1 Organization block (OB)

Organization blocks provide structure for your program. They serve as the interface between the operating
system and the user program. OBs are event driven. An event, such as a diagnostic interrupt or a time interval,
will cause the CPU to execute an OB. Some OBs have predefined start events and behavior.

The cyclic program OB contains your main program. You can include only one cyclic program OB in your user

program. During RUN mode, the cyclic program OB executes at the lowest priority level and can be interrupted
by all other types of program processing. The startup OB does not interrupt the cyclic program OB because the
CPU executes the startup OB before running the cyclic program.

After finishing the processing of the cyclic program OB, the CPU immediately executes the cyclic program OB
again. This cyclic processing is the "normal” type of processing used for programmable logic controllers. For
many applications, the entire user program is located in a single cyclic program OB.

You can create other OBs to perform specific functions, such as for handling interrupts and errors, or for
executing specific program code at specific time intervals. These OBs interrupt the execution of the cyclic
program OB.

Use the "Add New Program Block" dialog to create new OBs in your user program.

New Program Block X
CyclicPragram language : |LAD -
Periodicinterrupt .
Program is executed ir
StopProgram n may ir to
Organization EmergencyStapProgram n general this is the main
o TimeOfDaylnterrupt executes other user
Hardwarelnterrupt
Function
Name : CyclicProgram
Function
Block i
Comment :
' Open after creation Cancel @ ok

Figure 6-1 New Program Block dialog

Interrupt handling is always event driven. When such an event occurs, the CPU interrupts the execution of
the user program and calls the OB that was configured to handle that event. After finishing the execution
of the interrupting OB, the CPU resumes the execution of the user program at the point of interruption.

The CPU determines the order for handling interrupt events by a priority assigned to each OB. Each event has a
particular servicing priority. The respective priority level within a priority class determines the order in which the
OBs are executed. Several interrupt events can be combined into priority classes. For more information, refer to
the PLC concepts chapter section on execution of the user program.

SM Version 1.4 61 14 Series

Programming Concepts

3.1.1 Creating an additional OB within a class of OB

You can create multiple OBs for your user program. Use the "Add New Program Block" dialog to create an OB.
Enter the name for your OB and submit the new block.

3.1.2 Configuring the operation of an OB

You can modify the operational parameters for an OB. For example, you can configure the interval or priority
parameter for a for a periodic interrupt OB.

Properties 3 x
MName : | Periodiclnterrupt
:._ Type : Periodicinterrupt
Arrangement : Category -

b Information

* Configuraticn

Protection Disabled <
Has 10 Control
Priority 2 =

Interval 25 ~ ms

Figure 6-2 Periodic Interrupt properties

3.2 Function (FC)

A function (FC) is a code block that typically performs a specific operation on a set of input values. The FC stores
the results of this operation in memory locations. For example, use FCs to perform standard and reusable
operations (such as for mathematical calculations) or technological functions (such as for individual controls
using bit logic operations). An FC can also be called several times at different points in a program. This reuse
simplifies the programming of frequently recurring tasks.

An FC does not have an associated instance data. The FC uses the local data stack for the temporary data used
to calculate the operation. The temporary data is not saved. To store data permanently, assign the output value
to a global memory location, such as M or G memory.

3.3 Function block (FB)

A function block (FB) is a code block that uses an instance data block for its parameters and static data. FBs
have variable memory that is located in a data block named “FB instance”, or "instance".

The instance provides a block of memory that is associated with that FB (or call) of the FB and stores data after
the FB finishes. You can associate different instances with different calls of the FB. The instances allow you to
use one generic FB to control multiple devices. You structure your program by having one code block make a call
to an FB and its instance. The CPU then executes the program code in that FB, and stores the block parameters
and the static local data in the instance. When the execution of the FB finishes, the CPU returns to the code
block that called the FB. The instance retains the values for that FB. These values are available to subsequent
calls to the function block either in the same scan cycle or other scan cycles.

3.3.1 Reusable code blocks with associated memory

You typically use an FB to control the operation for tasks or devices that do not finish their operation within one
scan cycle. To store the operating parameters so that they can be quickly accessed from one scan to the next,
each FB in your user program has one or more instances. When you call an FB, you also specify an instance that
contains the block parameters and the static local data for that call or "instance" of the FB. The instance
maintains these values after the FB finishes execution.

By designing the FB for generic control tasks, you can reuse the FB for multiple devices by selecting different
instances for different calls of the FB.

An FB stores the Input, Output and Static parameters in an instance.

SM Version 1.4 62 14 Series

Programming Concepts

3.3.2 Assigning the start value in the instance

The instance stores both a default value and a start value for each parameter. The start value provides the value
to be used when the FB is executed. The start value can then be modified during the execution of your user
program.

The FB interface also provides a "Default value" column that allows you to assign a new start value for the
parameter as you are writing the program code. This default value in the FB is then transferred to the start value
in the associated instance of FB. If you do not assign a new start value for a parameter in the FB interface, the
default value from instance DB is copied to start value.

3.3.3 Using a single FB with multiple instances

The following figure shows an OB that calls one FB three times, using a different instance for each call. This
structure allows one generic FB to control several similar devices, such as motors, by assigning a different
instance for each call for the different devices. Each instance stores the data (such as speed, ramp-up time, and
total operating time) for an individual device.

o8 ’ e
FB I
FB, Instance 1 i ‘
FB, Instance 2 | | Instance 2
FB, Instance 3 l
I pmmmsmssmmem e - a
‘ Instance 3 E

In this example, FB controls three separate devices, with Instance 1 storing the operational
data for the first device, Instance 2 storing the operational data for the second device, and Instance 3 storing the
operational data for the third device.

3.34 Creating reusable code blocks

Use the "Add New Program Block" dialog under | Newprogram slack X
Program Blocks" in the Plant Explorer pane to et onguage: [T .
create OBs, FBs and FCs. Periodiclnterrupt
:.- StartupProgram
When you create a code block, you select the StopProgram
H . EmergencyStopProgram
programming language for the block. Onganiston | SRS
Hardwarelnterrupt
Function
Mame : CyclicProgram
Function
Block ~
Comment:
o Open after creation Cancel 8 ox

SM Version 1.4 63 14 Series

Programming Concepts

Q TIP
When you make or change a user data type (UDT) or a function block (FB) structure, #a 38 JZ i o5 gt B
you must update its interface by clicking on the “Update Interface” button in the :L\,

editor toolbar. The changes will not be taken effect until you update the interface of 13
that data type. h

4. Understanding data consistency

The CPU maintains the data consistency for all of the elementary data types (such as Words or DWords) and all
of the system-defined structures (for example, TON or CTU).

The reading or writing of the value cannot be interrupted. (For example, the CPU protects the access to a DWord
value until the four bytes of the DWord have been read or written. To ensure that the cyclic program OB and the
interrupt OBs cannot write to the same memory location at the same time, the CPU does not execute an interrupt
OB until the read or write operation in the program cycle OB has been completed.

If your user program shares multiple values in memory between a cyclic program OB and an interrupt OB, your
user program must also ensure that these values are modified or read consistently.

A communication request from an HMI device or another CPU can also interrupt execution of the cyclic program
OB. The communication requests can also cause issues with data consistency. The CPU ensures that the
elementary data types are always read and written consistently by the user program instructions. Because the
user program is interrupted periodically by communications, it is not possible to guarantee that multiple values in
the CPU will all be updated at the same time by the HMI. For example, the values displayed on a given HMI
screen could be from different scan cycles of the CPU.

Ensure the data consistency for the buffers of data by avoiding any read or write operation to the buffers in both
the cyclic program OB and an interrupt OB.

5. Programming language
Intelart Studio provides the following standard programming languages for 14 PLCs:

e LAD (ladder logic) is a graphical programming language. The representation is based on circuit
diagrams.

¢ FBD (Function Block Diagram) is a programming language that is based on the graphical logic symbols
used in Boolean algebra.

When you create a code block, you select the programming language to be used by that block.

Your user program can utilize code blocks created in any or all of the programming languages.

5.1 Ladder logic (LAD)

The elements of a circuit diagram, such as normally closed and normally open contacts, and coils are linked to
form networks.

To create the logic for complex operations, you can insert branches to create the logic for parallel circuits.
Parallel branches are opened downwards or are connected directly to the power rail. You terminate the branches
upwards.

F&M0.0 MO H%M0.2

Start Stop Cn
— | /1 (y—
3:M0.2
On

Figure 6-3 A sample ladder network

LAD provides "box" instructions for a variety of functions, such as math, timer, counter, and move.

Intelart Studio does not limit the number of instructions (rows and columns) in a LAD network.

SM Version 1.4 64 14 Series

Programming Concepts

Q TIP

Every LAD network must terminate with a coil or a box instruction.

Consider the following rules when creating a LAD network:
e You cannot create a branch that would cause a short circuit.

FEMO0.0 FEMO0.1 F6M0.2

Start Stop On
— | /1 { r—
%M0.2

L X

e Aladder network must be flowed from left top to right bottom direction

3EMO0.0 3:M0.1 %M0.2

Start Stop
— | /1 X—

5.2 Function Block Diagram (FBD)

Like LAD, FBD is also a graphical programming language. The representation of the logic is based on the
graphical logic symbols used in Boolean algebra.

Mathematical functions and other complex functions can be represented directly in conjunction with the logic
boxes.

Intelart Studio does not limit the number of instructions (rows and columns) in an FBD network.

%M0.0 >=1 & % M0.2

Start— IN1 ouT M1 OUT=—0n
%M0.2 FEMO0.1 =/

On—IN2 Stop—|IN OUT —1IN2

Figure 6-4 A sample function block diagram network

53 EN and ENO for LAD and FBD

5.3.1 Determining "power flow" (EN and ENO) for an instruction

Certain instructions (such as the Math and the Move instructions) provide parameters for EN and ENO. These
parameters relate to power flow in LAD or FBD and determine whether the instruction is executed during that
scan.

EN (Enable In) is a Boolean input. Power flow (EN = 1) must be present at this input for the box instruction to be
executed. If the EN input of a LAD box is connected directly to the left power rail, the instruction will always be
executed.

ENO (Enable Out) is a Boolean output. If the box has power flow at the EN input and the box executes its
function without error, then the ENO output passes power flow (ENO = 1) to the next element. If an error is
detected in the execution of the box instruction, then power flow is terminated (ENO = 0) at the box instruction
that generated the error.

SM Version 1.4 65 14 Series

Programming Concepts

Q TP
Some instructions have a short circuited EN-ENO. It means that the ENO is INC
directly passes the EN value and is not dependent on the functionality of that .. —EN——ENO—. . .
instruction.
<8773 — IN/OUT
6. Protection

6.1 Access protection for the CPU

The CPU provides a security mechanism for restricting access to going online. When you configure the password
for a CPU, you limit the communications with the Intelart Studio that cannot be accessed without entering a
password.

The password is case-sensitive.
To configure the password, follow these steps:
1- Inthe "Online & Diagnostic", o to Options.
2- The Intelart Studio must be gone online and the CPU must be in STOP mode.
3- Click on load button in order to loading the current configuration of CPU.
4- The “Password” field never loads by the current password because of security reasons.
5- Specify the password by entering it in the “Password” field.
6- Click on “Apply” button to download the current configuration to the CPU.

B oe b Ver D Tob Mo o . —
GEm - S %d X At @, & Go Qnline ¥ Go Offime 2 B WarmStart =

Pt Explorer [7 Griine & Dagnasic Catsog 4 x

a @
[Plant!

| ",

et [N

Upgrade Firmware

Start Upgrade

45X B Device Configuration I Skatfd) I CFI10 B Oniline & Diagnastic

Figure 6-5 Configuration of a CPU

Q TP

You can save current configuration in a “.iacfg” file in order to use in future or send to another person.

Q TP

A restart is needed after downloading the configuration to the CPU in order to settings will be take effect. You
can simply turn off the power and then turn it on after a few seconds.

SM Version 1.4 66 14 Series

Programming Concepts

6.1.1 Going online to a protected CPU

In order to going online to a protected CPU, -
follow these steps:

o,

1- Inthe "Device configuration", select the

CPU. CP310
. Properties 1 x rous
2- In the Properties pane, expand the Name [cP310 IS BCTTTCTTERETTITY
"Configuration group”. [| —
Arrangement : Category -
3- Select the "Password" property to b o
enable the protection and to enter a T Cetausen
password. Password Dissbled -
Input 0 Disabled
4- Click on “Ok” button in order to save the Ingut | Freble] b

changes.

Output 1

5- Click on “Go Online” button in main
toolbar.

Output 2

3
3
»
»
b Output0
»
3
P Output 3-15

6.2 Program blocks protection

Program block protection allows you to prevent one or more code blocks (OB, FB or FC) in your program from
unauthorized access. You create a password to limit access to the code block. The password-protection prevents
unauthorized reading or modification of the code block. Without the password, you can read and edit Block tags
editor, block code body, and block properties.

When you configure a block for "Enabled" protection the Intelart Studio asks you a password to protect the
program block. After that the user must enter the password in order be able to view and edit the code body and
tags list otherwise the code within the block will not be accessed. Also, the tags list will be read only and write
protected.

Use the "Properties" pane of the code block to configure the protection for that block. After opening the code
block, select "Protection” from Properties.

1- In the Properties for the code 5"
block, click the "Protection” v
drop down list to display the
protection modes list.

2- Click on “Enabled” item and : b
then enter the password in the et — e
password dialog. m o

3- Click on “Ok” button in order to Arrangement : EEIEERERS S
save changes. b Information

¥ Configuration

INTELART]

auH o
FAULT 01234567 #9wun

O
BindedSerialNumber &

4- Close the program block editor
and try to reopen it. You will

Password Disabled <

. Input 0 Disabled
see a pop-up dialog asks you a Input 1

b
»
P Input2
password to proceed. St
} Output0
5- If you enter the correct Ao
password, all program block :

parts will be editable for you.

Cutput 1
Output 2

Cutput 3-15

6- If you click on “Cancel” button, the program block editor will be opened in limited mode (described
earlier).

Q TP

If you choose “permanent” mode for protection of a program block, it will be protected permanently and any
user will not be able to edit the program block even by accessing the password.

6.3 Copy protection

An additional security feature allows you to bind the compiled project for use with a specific CPU. This feature is
especially useful for protecting your intellectual property. When you bind a project to a specific device, you restrict
the program and all its code blocks for use only with a specific CPU. This feature allows you to distribute a
program or code block electronically (such as over the Internet or through email) or by sending a memory device.

SM Version 1.4 67 14 Series

Programming Concepts

1- Inthe "Device configuration", 3 Add New Program Black 4’:9
select the CPU. , ﬂfucja::ocu.es ©

2- In the Properties pane, expand g
the "Configuration group”.

CP310

3- Click on the — 3 | o
“BindedSerialNumber” property i Nome : [CP310 M Toiasaser sem HRISEEE
to enter a specific CPU serial Type: CP210
number. Amangement | EEEEE -

4- Now you can compile the - Ifl"\ﬁ;z:lr:tri’!cn oi234587 sowmmsms
pl’Oject and Send the Compl|el’ BindedSerialNumber BDAE20B681D1410C I =
binary output file for any :I"fu Disebled -
person. The compiled project » .n';ut-
will be downloaded on a CPU b (o
with the specified serial number | 'c"ft”:;f
in the “BindedSerialNumber” T
property. S

Q TP

The serial number is not case sensitive.

Q TP

You can access the compiled binary output file in the “output” folder beside the “.iapIn” plant file.

6.4 Downloading a compiler binary output file
You can download a CPU program without needing the source project. Follow these steps:

1- Click on “Compile” button in main toolbar (or press F7 key on T
keyboard). Ty

_ & & GoOnline ¥ Go

2- Open the “output” folder beside the “.iapIn” plant file. You will see a
“.iabin” file (with the device name in the project).

3- This file contains all program data in order to download without needing to access the source project file.
4- In the “Device” menu, click on the “Download Pre-Compiled” menu item.

5- You will see a dialog asks for “Compiled Application” (“.iabin” file) and “Device Configuration” (“.iacfg
file) files selectable for download to the CPU.

6- Determine each part you need and click on “Download” button.

Q TP

If a “.iabin” file is copy protected by binding to a specific serial number, you will be able to download that file
only on the specified CPU but the configuration file always will be downloaded to the CPU.

7. Downloading the elements of your program

You can download the elements of your project from the programming device to the CPU. When you download a
project, the CPU stores the user program (OBs, FCs, FBs and other device configurations) in a nonvolatile
memory (Load Memory).

You can download your project from the programming device to your CPU from any of the following locations:

e "Device" menu: Click the "Current and Download " or IS| Fie Edit View | Device | Tools Window Help
“‘Download Last Compile” or “Download Pre-Compiled” @3¢ & 9 - - EofeiTr= Tl
menu item. #* Go Offline crem |

E a o P Warm Start Device F5
[Plant1 P Cold Start Device

%7 Add New Device
& Devices 8t Network
4 i 145X wta Compile and Download Current F&

Stop Device

& Device Configur) Download Last Compile

{p Orline & Diagn Download Pre-Compiled
£ Watch & Foree [if]

SM Version 1.4 68 14 Series

Programming Concepts

e Toolbar: Click the "Compile Current and Download" button or press F6 & Go Offline ‘ P WarmStart = _
keyboard key. :

Compile Current and Download (F6)

e “Tools” menu: Click the “Transfer Program to SD Card”. Some devices may Tools | Window _ Help

not support this feature. For more info see the next section. 1) @fene]
License Manager

F
ol Transfer Program to SD Card

7.1 Transfer Program to SD Card

You can program a device by a SD card memory If the device supports programming by SD card. Follow these
steps:

1- Insert the SD card into a memory card reader or any other memory card reader and connect the device
to your programming device (PC).

2- Click on “Transfer Program to SD Card” menu item in “Tools” menu.

3- Open the “output” folder beside the “.iapIn” plant file. You will see a “.iabin” file (with the device name in
the project).

4- This file contains all program data in order to download without needing to access the source project file.

5- You will see a dialog asks for “Compiled Application” (“.iabin” file) and “Device Configuration” (“.iacfg
file) files selectable for download to the CPU.

6- Determine each part you need and click on “Download” button.

7- You can tell the CPU you want the program data files be removed after downloading program process
by enable the “Delete data files after download” check box (default is checked).

8- Click on “Save Files” button and in the directory selection dialog choose the SD card memory root
address.

9- Click Ok and wait for a moment in order to files be wrote on the memory then safely remove the SD
card.

10- Insert the SD card in the SD card slot in the CPU when the device is turned off.

11- When you turn on the device, it will detect the files and will start the downloading process automatically.
wait for the process to finish. Then remove the SD card.

Q TIP

You cannot download a Copy Protected program by SD card to CPU.

8. Uploading from the CPU

You cannot upload any part of program from CPU due to security reasons. You must take care of your project
files and keep them in a safe place in order to future use.

9. Monitoring and testing the program

9.1 Monitor and modify data in the CPU

As shown in the following table, you can monitor and modify values in the online CPU.

Table 6-2 Monitoring and modifying data with Intelart Studio

Editor Monitor Modify Force Log
Watch & Force list Yes Yes Yes Yes
Program editor Yes Yes No No

SM Version 1.4 69 14 Series

Programming Concepts

¥ Network[0]: Network ¥ Network[0]: Metwork
Comment : Comment :

False False True False False True
Start Stop Cn Start Stop On
== - == -
True True
Cn Cn

Figure 6-7 Monitoring with the LAD editor Figure 6-6 Modifying with the LAD editor

39 Online & Diagnostic* LT Main* [l External TagTable #o Watch & Force List X _

i@ % FF alal B

W Name DataType Address Display Format Monitor Value Modify Value Captured Value Select Log Comment Tag Comment
i Start Bool %M0.0 Default False False v
2z Stop Bool Default False False v
£ On Bool Default True False v

Figure 6-8 Monitoring, Modifying, Forcing and logging with a watch & Force List

9.2 Watch and force list

You use "Watch & Force List" for monitoring, modifying, Forcing and Logging the values of a user program being
executed by the online CPU. With a Watch & Force List, you can monitor and interact with the CPU as it
executes the user program. You can display or change values not only for the tags of the code blocks, but also
for the memory areas of the CPU, including the inputs and outputs (I and Q), special memory (S), bit memory
(M), and reference memory (G).

With the Watch & Force List, you can modify or force the physical digital and analog outputs (Q) of a CPU. For
example, you can assign specific values to the outputs when testing the wiring for the CPU.

Q TP

You cannot force an input (or "I" address).

9.3 Cross reference to show usage

The Inspector window displays cross-reference information about how a selected object is used throughout the
complete project, such as the user program, the CPU and any HMI devices. The "Cross-reference" dialog
displays the instances where a selected object is being used and the other objects using it. To display the cross-
references, select the "Cross References" in context menu of that object.

Q TP

By double-click on the Cross References dialog items you can navigate to that object.

9.4 Call structure to examine the calling hierarchy

The call structure describes the call hierarchy of the block within your user program. It provides an overview of
the blocks used, calls to other blocks and the relationships between blocks. You can open the program editor and
edit blocks from the call structure.

Displaying the call structure provides you with a list of the blocks used in the user program. Intelart Studio
highlights the first level of the call structure and displays any blocks that are not called by any other block in the
program. The first level of the call structure displays the OBs and any FCs or FBs that are not called by an OB. If
a code block calls another block, the called block is shown as an indentation under the calling block. The call
structure only displays those blocks that are called by a code block.

SM Version 1.4 70 14 Series

Basic Instructions

Basic Instructions

This chapter describes basic instructions based on IEC 61131-3. Also, some instructions have been added in
addition to the original IEC instructions.

Before you start programming a CPU, you must know the following concepts. Some instructions may support
none, some, or all of these concepts. All configurable instructions emerge a “configuration” group in the
Properties pane when you are select them by mouse. To be able to use all these features, you need to know
these features:

e Instruction Type: you can change the

. . ; . - InstructionType AND <
operation logic of some instructions without _ T
needing to delete theme and add new EFAEiET B e
instruction of that group. You just can easily InputsCount OR S
change the logic (or type of that instruction) by #OR
changing the InstructionType property.
Example: you want to change
a wired AND instruction to OR AND
but you have set the .. —ENA | AND Instruction
arguments so deleting and 2 ®OR N Instuction
adding a new instruction will SR —mwip W XOR Instruction
be awkward. You can make
the AND to OR by changing ITEE—IN2
the InstructionType property
or by double-click on its name
in top of the instruction box
and select another instruction
type.

e Operation Type: Some instructions can InstructionType ADD -
operate on multiple internal data types. You e = =
can select the most suitable data type for your pershiantatalyes 4
that instruction by chnging the InputsCount Sint
“OperationDataType” property in Properties
pane. Example: you have inserted a ADD Dint
instruction and it is going to add real tags Lint
together. In this case you must change the USint
“OperationDataType” property to “Real”. Ulnt

UDlnt

ULInt

Real

LReal by

SM Version 1.4 71 14 Series

Basic Instructions

e Inputs/Outputs Count: If an instruction

supports variable inputs or outputs count, you | Ewizwﬁ n | ENM_WEW |

can change them by the “InputsCount” or . . Y = T
“OutputsCount” properties in properties pane. — A EEN ~ 555
Example: you want to add 5 numbers together. N1 OUT—j N OUTI —
Instead of u§|ng multiple ﬁDD instruction, you S |1 ouT? —
can change “InputsCount” propertu to 5 so the

inputs of the ADD instruction will be increased to 13 oUTs — s

5.

<7 TIx— N4

= T {=— NS

e Implicit Casting: In implicit casting, the conversion involves a smaller

; SO SHR
data type to the larger type size. For example, the Sint datatype implicitly . I
cast into Int. The process of converting the lower data type to that of a
higher data type is referred to as internal widening in the instruction - our—
opertions. Example: You want to specify the number of shifting in the SHR
instruction. As the N input is of type AnylInt, you can enter any integer with 5 —N
any size (such as USint or ULInt) or a constant. The convertion process E;
will be autmatically without error in the internal instruction operations. Input=> N : Anylnt

2 (5lnt)

e Explicit Casting: Explicit type conversion, also called type casting, is a ADD
type conversion which is explicitly defined within a program (instead of . —EM——ENO—. . .
being done automatically according to the operation of instruction or
implicit type conversion). It is requested by the user in the program. SintTag—#IN1 QUT —IntTag
Example: An ADD instruction with Int Operation Data Type can accept any
number (AnyNum) on its arguments. If the argument assigned tag data RealTag -mINZ

type does not match the instruction type, an explicit casting will be
occurred automatically before execution of ADD instruction internal operations.

/\ WARNING
Sometimes an e;xphmt castlng ADD ADD
can lead to runtime error in .. —EN—ENO—. . . . —EN——ENO—. . .

CPU. For example, if you try
to cast an Int with a value
1000 to an Sint value, a
runtime error will be occurred. gairag RealTag —mIN2

Explicit casting with the E{?

probability of runtime error emerges as a bold square £\ Warning

beside the instruction argument- Explicit Casting. Runtime error is possible

SintTag %N‘ OUT — IntTag SintTag =mIN1 OUT — IntTag

e EN/ENO Arguments: In LAD or FBD some instructions provide input EN and output ENO arguments.
For these instructions, if you want to allow the execution of the instruction, set its EN to 1. If you want to
suppress the execution of an instruction, set its EN to 0. If the block is executed correctly, output ENO
follows input EN. If an error is detected while executing an instruction with internal error diagnostic,
output ENO of that instruction is set to value 0. The values for all other outputs and in-out variables of
the instruction are in principle undefined. That means that these variables can assume different values
on different operation states.

Q TP

When to use ENO with instructions providing an internal error diagnostic?

If you want to clear the execution of following blocks but only when the current block is executed
without errors, then make the execution of the following blocks dependent on output ENO of the
current block (for example by an appropriate access to output ENO).

SM Version 1.4 72 14 Series

Basic Instructions

e EN-ENO Connected: You may see some

; - - ; ADD MUL
instructions have a line between their EN and —EN—ENO—. . . —EN ENO—. . .
ENO arguments. It means the ENO follows the

EN value regardless of instruction execution 579 — 1 ouT—ErRETE w1 ouT—EEE
result. Example: ADD instruction is an EN-ENO

connected instruction but MUL instruction is 57758 — 2 7750 — N2

not.

Wire and non-Wire Arguments: In FBD you SHR ROL

can connect multiple instructions by a wire —EN—ENO—. . . —EN—ENO—. . .
together. You can determine whether an

argument can be wired or not by checking the 599 — N ouT N ouT— e
space between the argument indicator. Space

between character (such as “.. .” or “? ? ?” 2 —N Y — N

instead of “...” or “???”) indicates that it can be
wired to another argument. Example: OUT and IN arguments in SHR and SHL instructions accept wire
but the N argument do not.

Q TIP

Wiring instructions in FBD:

1- Press down left mouse button on an output argument and then drag the mouse while the left
mouse button is hold down

2- Move the mouse cursor over an input argument that you desire to make a wiring between
them.

3- when the wiring between the two arguments is eligible the mouse cursor turns to a green
icon indicating you release the mouse button to make a wire connection between the
arguments. Otherwise, the mouse cursor icon remains in a red status.

& ADD
G7—= N1 ouT—DEEER e) ~BEN——ENOQ —. . .
‘e
<7 TS — N2 <7 8> — N1 OuT — =277
<7 77> — N2
Figure 7-1 An eligible wiring
& ADD
<7 775> —|N1 OUT — EE e . =BEN—ENO—. . .
<7 TS — N2 TEdF e — N1 OUT —=2 77>
F3
o
2?7795 — N2

Figure 7-2 An unauthorized wiring

Optional Argument: Some instructions have one or more arguments that is not necessary to assign a
tag (or constant). These arguments will be indicated by “...” or “. . .”. In case you do not assign a tag (or
constant) to an optional argument, its default value will be determined.

Limited/Unlimited Function Array Argument: When you design a FC or FB, you can define arrays of
unlimited size for some arguments. This feature makes your FCs and FBs not dependent on array size

so you can design more general FCs or FBs. In order to define an unlimited array, you should define an
array like a limited size array but place a “*” instead of a number for each dimension size.

Example: Name DataType DefaultValue Comment
* Input
B » UnlimitedBool Bool[*]
B » Unlimited2DWord Word[**]
B <Add New ltem>
SM Version 1.4 73 14 Series

Basic Instructions

Q TIP

You can define unlimited arrays for Input, Output and InOut in FCs and only for InOut in FBs.

e Abstract Function Argument: When you design a FC or FB, you can define an abstract data type
instead a basic data type. For example, you can define an Anyint instead of Int so you will be able to
assign Sint, Int, DInt and LInt tags to that argument when you call your FC or FB.

EXampIe: Name DataType DefaultValue Comment
> Input
[] Integerinput Anylint
|] Floatinput AnyReal
fg <Add New ltem>

Q TP

You can define abstract data types for Input, Output and InOut in FCs and only for InOut in FBs.

e Local/Global Argument Notation: You can determine whether an ADD
assigned tag to an instruction argument is global or local by the . —EN—END—. . .
prepended character “#” for locals. That means if a local tag assigns to
an instruction argument, its name will be started by a “#" sign. Example: gopamag— 1 ouT —299%
Assigned tag to IN1 is a global tag but the assigned tag to IN2 is a local

tag. #localTag— IN2

Q TIP

All'l, Q, M and G tags are global elsewhere are local.

1. Bit logic
1.1 Bit logic contacts and coils
LAD and FBD are very effective for handling Boolean logic.

1.1.1 LAD contacts

Table 7-1 Normally open and normally closed contacts

LAD Description
IN Normally open and normally closed contacts: You can connect contacts to other contacts
— and create your own combination logic. If the input bit you specify uses memory identifier |

(input) or Q (output), then the bit value is read from the process-image register. The
N physical contact signals in your control process are wired to | terminals on the PLC. The
—/— CPU scans the wired input signals and continuously updates the corresponding state
values in the process-image input register.

Supported Properties: Instruction Type

Table 7-2 Data types for the parameters

Parameter Data type Description
IN Bool Assigned bit

e The Normally Open contact is closed (ON) when the assigned bit value is equal to 1.
e The Normally Closed contact is closed (ON) when the assigned bit value is equal to 0.

e Contacts connected in series create AND logic networks.

SM Version 1.4 74 14 Series

Basic Instructions

e Contacts connected in parallel create OR logic networks.

FBD AND, OR, and XOR boxes

In FBD programming, LAD contact networks are transformed into AND (&), OR (>=1), and exclusive OR (x) box
networks where you can specify bit values for the box inputs and outputs. You may also connect to other logic
boxes and create your own logic combinations.

Box inputs and outputs can be connected to another logic box, or you can enter a bit address or bit symbol name
for an unconnected input. When the box instruction is executed, the current input states are applied to the binary
box logic and, if true, the box output will be true.

Table 7-3 AND, OR, and XOR boxes

FBD Description

&
<277 —IN1 oUT—[gIIEY

<7 77— N2

>=1
< i>— M1 OUT — 572 75

<7 27— N2

X
< i>— M1 OUT — 57 2 75

TRUE.

<7 27— N2

All inputs of an AND box must be TRUE for the output to be TRUE.

Any input of an OR box must be TRUE for the output to be TRUE.

An odd number of the inputs of an XOR box must be TRUE for the output to be

Supported Properties: Instruction Type, Inputs Count

Table 7-4 Data types for the parameters

Parameter Data type Description
IN1, IN2 Bool Input bit
ouT Bool Output bit
NOT logic inverter
Table 7-5 NOT Logic inverter
LAD FBD Description
For FBD programming, you can drag the "Bitwise inverting"
instruction from the Catalog and then drop it on a network.
= The LAD NOT contact inverts the logical state of power flow input.
—— B — B ouT — e If there is no power flow into the NOT contact, then there

Supported Properties: None

Table 7-6 Data types for the parameters

is power flow out.
e If there is power flow into the NOT contact, then there is
no power flow out.

Parameter Data type Description
IN Bool Input bit
ouT Bool Output bit
Output coil and assignment box
SM Version 1.4 75 14 Series

Basic Instructions

The coil output instruction writes a value for an output bit. If the output bit you specify uses memory identifier Q,
then the CPU turns the output bit in the process-image register on or off, setting the specified bit equal to power
flow status. The output signals for your control actuators are wired to the Q terminals of the CPU. In RUN mode,
the CPU system continuously scans your input signals, processes the input states according to your program
logic, and then reacts by setting new output state values in the process-image output register. After each
program execution cycle, the CPU system transfers the new output state reaction stored in the process-image

register to the wired output terminals.

Table 7-7 Output coil (LAD) and output assignment box (FBD)

LAD FBD Description

<17> In FBD programming, LAD coils are transformed into
Result _ assignment (= and /=) boxes where you specify a bit address
{ y— — - for the box output. Box inputs and outputs can be connected

oo—IN ouT—. ..
to other box logic or you can enter a bit address.

<777
Result 7
() .o.o—IN ouT—. ..

Supported Properties: Instruction Type

Table 7-8 Data types for the parameters

Parameter Data type Description
TOP (Argument above the instruction) Bool Assigned bit
ouT Bool Follows state of "IN"

e If there is power flow through an output coil or an FBD "=" box is enabled, then the output bit is set to 1.

e If there is no power flow through an output coil or an FBD "=" assignment box is not enabled, then the

output bit is set to 0.

e If there is power flow through an inverted output coil or an FBD "/=" box is enabled, then the output bit is

setto O.

o If there is no power flow through an inverted output coil or an FBD "/=" box is not enabled, then the

output bit is set to 1.

1.2
Set and Reset 1 bit

Table 7-9 S and R instructions

Set and reset instructions

LAD FBD Description
feau <777 In FBD programming, LAD coils are transformed into
ssult 5 assignment (= and /=) boxes where you specify a bit address
(s) CU—=IN ouT—. .. for the box output. Box inputs and outputs can be connected
to other box logic or you can enter a bit address.
Result e These instructions can be placed anywhere in the network.
(R) R
Co=IN oUT—. ..

Supported Properties: Instruction Type

Table 7-10 Data types for the parameters

Parameter Data type Description
IN (or connect to contact/gate logic) Bool Bit location to be monitored
TOP (Argument above the instruction) Bool Bit location to be set or reset
ouT Bool Follows state of "IN"
SM Version 1.4 76 14 Series

Basic Instructions

Set-dominant and Reset-dominant bit latches

Table 7-11 RS and SR instructions

LAD/ FBD Description
<777 RS is a reset dominant latch where the reset dominates. If the set (S)
RS and reset (R1) signals are both true, the output address OUT will be 0.
..—R1
<777 SR is a set dominant latch where the set dominates. If the set (S1) and
R reset (R) signals are both true, the output address OUT will be 1.
..—s1 aQ—. ..

=R

Supported Properties: None

Table 7-12 Data types for the parameters

Parameter Data type | Description
S, S1 Bool Set input; 1 indicates dominance
R, R1 Bool Reset input; 1 indicates dominance
Q Bool Assigned bit output "Q"
INSTANCE (Argument above the instruction) | RS RS and SR function block (system) instance
Instruction S R1 Q
RS 0 0 Previous state
0 1 0
1 0 1
1 1 0
S1 R
SR 0 0 Previous state
0 1 0
1 0 1
1 1 1
1.3 Positive and negative edge instructions
Table 7-13 P_TRIG and N_TRIG instructions Version 1.0
LAD FBD Description
<777 The Q output power flow or logic state is TRUE when a
e R TRIG positive transition (OFF to ON) is detected on the CLK input
P L=k Q—... state (FBD) or CLK power flow in (LAD).
<177> The Q output power flow or logic state is TRUE when a
<P7e> ETRIG negative transition (ON o OFF) is detected on the CLK input
N =K a—. .. state (FBD) or CLK power flow in (LAD).

Supported Properties: Instruction Type

SM Version 1.4 77 14 Series

Basic Instructions

Table 7-14 P_TRIG and N_TRIG instructions Version 2.0

LAD FBD Description

LAD: The state of this contact is TRUE when a positive
. transition (OFF .to ON) i.s detected on the a§signed "IN" bit.

s R TRIG The contact logic state is then combined with the power flow

— P — e in state to set the power flow out state. The P contact can be
e o located anywhere in the network except the end of a branch.

FBD: The output logic state is TRUE when a positive
transition (OFF to ON) is detected on the assigned input bit.
This is the version 2.0 of R_TRIG function block.

LAD: The state of this contact is TRUE when a negative

transition (ON to OFF) is detected on the assigned input bit.

The contact logic state is then combined with the power flow

—IN— I o . in state to set the power flow out state. The N contact can be

e located anywhere in the network except the end of a branch.
FBD: The output logic state is TRUE when a negative

transition (ON to OFF) is detected on the assigned input bit.
This is the version 2.0 of F_TRIG function block.

<277
—CLK

<777

<777 F TRIG

— CLK

Supported Properties: Instruction Type

Table 7-15 P_TRIG and N_TRIG instructions Version 3.0

LAD FBD Description

LAD: The assigned bit "Q" is TRUE when a positive
A <P7?> transition (OFF to ON) is detected on the “CLK” input.
R_TRIG R_TRIG The power flow in state always passes through the coil
EM ENO . =—EN—ENDO—. .. as the power flow out state.
FBD: The assigned bit "Q" is TRUE when a positive
—CLK aQ— —CLK Q- transition (OFF to ON) is detected on the logic state at
the box input connection or on the input bit assignment.

LAD: The assigned bit "Q" is TRUE when a negative

<777» <177 transition (ON to OFF) is detected on the “CLK” input.
F_TRIG F_TRIG The power flow in state always passes through the coll
EN ENO C o= EN—ENO—. . . as the power flow out state.
FBD: The assigned bit "Q" is TRUE when a negative
—CLK a—- —CLK aQ— transition (ON to OFF) is detected on the logic state at

the box input connection or on the input bit assignment.

Supported Properties: Instruction Type

Table 7-16 Data types for the parameters

Parameter Data type | Description
CLK Bool Power flow or input bit whose transition edge is
to be detected
Q Bool Output which indicates an edge was detected
INSTANCE (Argument above the instruction) | R_TRIG, R_TRIG and F_TRIG function block (system)
F_TRIG instance

All edge instructions use a memory bit (M) in their instance to store the previous state of the input signal being
monitored. An edge is detected by comparing the state of the input with the state of the memaory bit. If the states
indicate a change of the input in the direction of interest, then an edge is reported by writing the output TRUE.
Otherwise, the output is written FALSE.

Q TP

Edge instructions evaluate the input and memory-bit values each time they are executed, including the first
execution. You must account for the initial states of the input and memory bit (M) in your program design
either to allow or to avoid edge detection on the first scan.

Because the memory bit must be maintained from one execution to the next, you should use a unique
instance for each edge instruction, and you should not use this bit any other place in your program. You

SM Version 1.4 78 14 Series

Basic Instructions

should also avoid temporary memory and memory that can be affected by other system functions, such as an
I/O update. Use only M, global G, or Static memory (in an OB or FB) for instancing R_TRIG or F_TRIG.

Q TIP

execution a code block.

Sometimes you are planning for a multi task program that only on edge detection operation must be occur in
individual task. That means when the first OB aware an edge detection, it must execute a routine and so other
OBs do not. In this case you create a global R_TRIG or F_TRIG instance and assign it to multiple edge
detection instructions in different OBs. So, you are sure that only one time an edge detection leads to

2. Word logic operations

2.1 AND, OR, and XOR instructions

Table 7-17 AND, OR, and XOR instruction

LAD/ FBD Description
AND AND: Logical AND
. —EN—ENO—. . . OR: Logical OR

XOR: Logical exclusive OR

<7 9= — N1 QUT —=f7%=

7 T dm — N2

Supported Properties: Instruction Type, Operation Data Type, Inputs Count

To increase or decrease inputs, click the "4 " or " v " icon in

the Properties pane. InputsCount 2 §
Table 7-18 Data types for the parameters

Parameter | Datatype Description

IN1, IN2 Byte, Word, DWord, LWord Logical inputs

ouT Byte, Word, DWord, LWord Logical output

The data type selection sets parameters IN1, IN2, and OUT to the same data type. The corresponding bit values
of IN1 and IN2 are combined to produce a binary logic result at parameter OUT. ENO is always TRUE following

the execution of these instructions.

2.2 Invert instruction

Table 7-19 INV instruction

LAD/ FBD Description
NOT Calculates the binary one's complement of the parameter IN. The one's
. —EN—ENO—. . . complement is formed by inverting each bit value of the IN parameter (changing

each 0 to 1 and each 1 to 0). ENO is always TRUE following the execution of

77— N ouT—=773: | this instruction.

Supported Properties: Operation Data Type

Table 7-20 Data types for the parameters

Parameter | Data type Description
IN Byte, Word, DWord, LWord Data element to invert
ouT Byte, Word, DWord, LWord Inverted output

SM Version 1.4 79

14 Series

Basic Instructions

2.3 Shift and Rotate

2.3.1 Shift instructions

Table 7-21 SHR and SHL instructions

LAD/ FBD Description
Use the shift instructions (SHL and SHR) to shift the bit pattern of parameter IN.
The result is assigned to parameter OUT.
Parameter N specifies the number of bit positions shifted:
Ze— Ny our—EEER e SHR: Shift bit pattern right
e SHL: Shift bit pattern left

SHR
o= EN—ENO—. . .

<% —N

Supported Properties: Instruction Type, Operation Data Type

Table 7-22 Data types for the parameters

Parameter | Datatype Description

IN Byte, Word, DWord, LWord Bit pattern to shift

N Anyint Number of bit positions to shift
ouT Byte, Word, DWord, LWord Bit pattern after shift operation

e For N=0, no shift occurs. The IN value is assigned to OUT.
e Zeros are shifted into the bit positions emptied by the shift operation.

e If the number of positions to shift (N) exceeds the number of bits in the target value (8 for Byte, 16 for
Word, 32 for DWord), then all original bit values will be shifted out and replaced with zeros (zero is
assigned to OUT).

e ENO s always TRUE for the shift operations.

Table 7-23 SHL example for Word data

Shift the bits of a Word to the left by inserting zeroes from the right (N = 1)
IN | 1110 0010 1010 1101 OUT value before first shift: 1110 0010 1010 1101

After first shift left: 1100 0101 0101 1010
After second shift left: 1000 1010 1011 0100
After third shift left: 0001 0101 0110 1000

2.4 Rotate instructions

Table 7-24 ROR and ROL instructions

LAD/ FBD Description

Use the rotate instructions (ROR and ROL) to rotate the bit pattern of parameter
IN. The result is assigned to parameter OUT. Parameter N defines the number
of bit positions rotated.

<277 —IN out — B ¢ ROR: Rotate bit pattern right

e ROL: Rotate bit pattern left

ROL
o= EN——ENO—. ..

<777 — N

Supported Properties: Instruction Type, Operation Data Type

Parameter | Datatype Description

IN Byte, Word, DWord, LWord Bit pattern to rotate

N AnylInt Number of bit positions to rotate
ouT Byte, Word, DWord, LWord Bit pattern after rotate operation

SM Version 1.4 80 14 Series

Basic Instructions

e For N=0, no rotate occurs. The IN value is assigned to OUT.

e Bit data rotated out one side of the target value is rotated into the other side of the target value, so no
original bit values are lost.

e If the number of bit positions to rotate (N) exceeds the number of bits in the target value (8 for Byte, 16
for Word, 32 for DWord), then the rotation is still performed.

e ENO is always TRUE following execution of the rotate instructions.

Table 7-25 ROR example for Word data

Rotate bits out the right -side into the left -side (N = 1)

IN | 0100 0000 0000 0001 OUT value before first rotate: | 0100 0000 0000 0001
After first rotate right: 1010 0000 0000 0000
After second rotate right: 0101 0000 0000 0000

3. Comparison

3.1 Compare

Table 7-26 Compare instructions Version 1.0

FBD Description

__ Compares two values of the same data type. When the FBD box comparison is
gl — N1 ouT— e TRUE, then the box output is TRUE.

<177 — N2

Supported Properties: Instruction Type, Operation Data Type

Table 7-27 Compare instructions Version 2.0

LAD FBD Description
__ Compares two values of the same data type. When the LAD

L —IN ouT—E3E contact comparison is TRUE, then the contact is activated.
<777 When the FBD box comparison (version 2.0) is TRUE, then

—]==}— 95— A the box output is TRUE.

<777

<717 — N2

Supported Properties: Instruction Type, Operation Data Type

For LAD and FBD: Click the InstructionType (such as "=="
to change the comparison type and OperationDataType to InstructionType -
change comparison data type from the drop-down list. e e = %

Table 7-28 Data types for the parameters

Parameter | Datatype Description
IN1, IN2 Any Values to compare
Q Bool Comparison result

Table 7-29 Comparison descriptions

Relation type Description
> IN1 is greater than IN2
>= IN1 is greater than or equal to IN2

== IN1 is equal to IN2

SM Version 1.4 81 14 Series

Basic Instructions

< IN1 is less than IN2
<= IN1 is less than or equal to IN2
<> IN1 is not equal to IN2

3.2 In-range and Out-of-range instructions

Table 7-30 In Range and Out of Range instructions

LAD/ FBD Description
Tests whether an input value is in or out of a specified value range. If the
comparison is TRUE, then the box output is TRUE.

IN_RANGE
9 — N ouT—REEEE

27775 — |N
<377> — MAX
OUT_RANGE

<TT3 —MIN OUT —gKIT 7>
<717 — N
<777 — MAX

Supported Properties: Instruction Type, Operation Data Type

Table 7-31 Data types for the parameters

Parameter Data type Description
MIN, VAL, MAX | AnyNum Comparator inputs

e The IN_RANGE comparison is true if: MIN <= VAL <= MAX
e The OUT_RANGE comparison is true if: VAL < MIN or VAL > MAX

4. Math

4.1 Add, subtract, multiply and divide instructions

Table 7-32 Add, subtract, multiply and divide instructions

LAD/ FBD Description
i o ADD: Addition (IN1 + IN2 = OUT)
. —EM——ENO—. . . e SUB: Subtraction (IN1 - IN2 = OUT)
e MUL: Multiplication (IN1 * IN2 = OUT)
SEREE—INT OUT —R7EE= e DIV: Division (IN1/IN2 = OUT)

An Integer division operation truncates the fractional part of the quotient to

77 H
L produce an integer output.

Supported Properties: Instruction Type, Operation Data Type, Inputs Count

Table 7-33 Data types for the parameters

Parameter Data type Description
IN1, IN2 AnyNum Math operation inputs
ouT AnyNum Math operation output

SM Version 1.4 82 14 Series

Basic Instructions

Table 7-34 ENO status

ENO | Description
True | No error

False | The Math operation result value would be outside the valid number range of the data type selected.
The least significant part of the result that fits in the destination size is returned.

Division by 0 (IN2 = 0): The result is undefined and zero is returned.
Real/LReal: If one of the input values is NaN (not a number) then NaN is returned.

MUL Real/LReal: If one IN value is zero and the other is INF, this is an illegal operation and NaN is
returned.

DIV Real/LReal: If both IN values are zero or INF, this is an illegal operation and NaN is returned.

4.2 Modulo instruction

Table 7-35 MOD instruction

LAD/ FBD Description

You can use the MOD instruction to return the remainder of an integer division
operation. The value at the IN1 input is divided by the value at the IN2 input and
the remainder is returned at the OUT output.

MOD
o= EN—ENO—. . .

<7 ix—IM1 QUT — =882

<727 — N2

Supported Properties: Operation Data Type

Table 7-36 Data types for parameters

Parameter Data type Description
IN1, IN2 AnylInt Modulo inputs
ouT Anyint Modulo output

SM Version 1.4 83 14 Series

Basic Instructions

General exponentiation instruction

Table 7-37 EXPT instruction

LAD/ FBD Description

EXPT General exponentiation is an operation involving two numbers, the base and
the exponent or power. You can use the EXPT instruction to raising IN1 to a
power of IN2 and return the result at the OUT output.

o EN——ENO—. ..

=779 —|N1 OUT — S8

=fTix— N2

Supported Properties: Inputl Data Type

Table 7-38 Data types for parameters

Parameter Data type Description

IN1 AnyReal Number to be raised

IN2 AnyNum Number to be powered to
ouT AnyIint Exponent output

4.3 Absolute value instruction

Table 7-39 ABS instruction

LAD/ FBD Description
ABS Calculates the absolute value of a signed integer or real number at parameter
. —EN—END—. . . IN and stores the result in parameter OUT.
=777 —IN oUT—4=7%E>

Supported Properties: Operation Data Type

Table 7-40 Data types for parameters

Parameter Data type Description
IN AnyNum Math operation input
ouT AnyNum Math operation output

4.4 Increment and decrement instructions

Table 7-41 INC and DEC instructions

LAD/ FBD Description
s Increments a signed or unsigned integer number value: IN/OUT value +1 =
. - IN/OUT value
22275 — IN/OUT
R Decrements a signed or unsigned integer number value: IN/OUT value - 1 =
IN/OUT value
. =—EN—ENO—. ..
<1225 — IN/OUT

Supported Properties: Instruction Type, Operation Data Type

SM Version 1.4 84 14 Series

Basic Instructions

Table 7-42 Data types for parameters

Parameter Data type Description
IN/ OUT Anyint Math operation input and output

4.5 Floating-point math instructions
You use the floating-point instructions to program mathematical operations using a Real or LReal data type:
e SQRT: Square root (VIN = OUT)
e LN: Natural logarithm (LN(IN) = OUT)
e LOG: Logarithm to base 10 (LOG(IN) = OUT)
e EXP: Natural exponential (e IN =OUT), where base e = 2.71828182845904523536
e SIN: Sine (sin(IN radians) = OUT)
e COS: Cosine (cos(IN radians) = OUT)
e TAN: Tangent (tan(IN radians) = OUT)
e ASIN: Inverse sine (arcsine(IN) = OUT radians), where the sin(OUT radians) = IN
e ACOS: Inverse cosine (arccos(IN) = OUT radians), where the cos(OUT radians) = IN

e ATAN: Inverse tangent (arctan(IN) = OUT radians), where the tan(OUT radians) = IN

Table 7-43 Examples of floating-point math instructions

LAD/ FBD Description
SORT Square root: VIN = OUT
—EN—ENO—. .. For example: If IN = 81, then OUT = 9.
2273 — N OUT—g=R2 s
= Natural exponential: e IN =OUT
—EN—ENO—. . . For example: If IN = 3, then OUT = 20.0855.
<228 — N OuT—gEEZES

Supported Properties: Instruction Type, Operation Data Type

Table 7-44 Data types for parameters

Parameter Data type Description
IN AnyReal Math operation input
ouT AnyReal Math operation output
5. Timer and Counter
51 Timers

You use the timer instructions to create programmed time delays. The number of timers that you can use in your
user program is limited only by the amount of memory in the CPU. Each timer uses a 16-byte IEC_Timer data
type structure to store timer data that is specified at the top of the box or coil instruction.

SM Version 1.4 85 14 Series

Basic Instructions

Table 7-45 Timer instructions

LAD/ FBD Description
<77 The TON timer sets output Q to ON after a preset time delay.
TON
—IN o—
PT ET
<777 The TOF timer resets output Q to OFF after a preset time delay.
TOF
—_ -
PT ET
<77 The TP timer generates a pulse with a preset width time.
TP
—IN a—
PT ET

Supported Properties: Instruction Type

Table 7-46 Data types for the parameters

Parameter Data type Description
IN Bool TP and TON:
FBD: O=Disable timer, 1=Enable timer
LAD: No power flow=Disable timer, Power flow=Enable timer
TOF:
FBD: O=Enable timer, 1=Disable timer
LAD: No power flow=Enable timer, Power flow=Disable timer

PT Time Preset time input
Q Bool Q box output
ET Time Elapsed time

Table 7-47 Effect of value changes in the PT and IN parameters

Timer Changes in the PT and IN parameters
TON e Changing PT is considered while the timer runs.

e Changing IN to FALSE, while the timer runs, resets and stops the timer.
TOF e Changing PT is considered while the timer runs.

e Changing IN to TRUE, while the timer runs, resets and stops the timer.
TP e Changing PT is considered while the timer runs.

e Changing IN has no effect while the timer runs.

PT (preset time) and ET (elapsed time) values are stored in the specified IEC_TIMER structures data as signed
double integers that represent milliseconds of time. TIME data uses the T# identifier and can be entered as a
simple time unit (T#200ms) and as compound time units like T#2s200ms. The negative range of the TIME data
type cannot be used with the timer instructions. Negative PT (preset time) values are set to zero when the timer
instruction is executed. ET (elapsed time) is always a positive value.

SM Version 1.4 86 14 Series

Basic Instructions

5.1.1 Operation of the timers

Table 7-48 Types of IEC timers

Timer Changes in the PT and IN parameters

TON: ON-delay timer
The TON timer sets output Q to ON | IN 4

after a preset time delay. |—| |

ET
PT+

TOF: OFF-delay timer
The TOF timer resets output Q to IN 4

OFF after a preset time delay. I_l
ET 4
PTT]
Q 4
PT | PT

TP: Pulse timer
The TP timer generates a pulse IN 4
with a preset width time.

ETA
PT_/
Q4
PT PT PT

In the CPU, no dedicated resource is allocated to any specific timer instruction. Instead, each timer utilizes its
own timer structure in memory and a continuously-running internal CPU timer to perform timing.

When a timer is started due to an edge change on the input of a TON, TOF or TP instruction, the value of the
continuously-running internal CPU timer is copied into the STIME member of the structure allocated for this timer
instruction. This start value remains unchanged while the timer continues to run, and is used later each time the
timer is updated. Each time the timer is started, a new start value is loaded into the timer structure from the
internal CPU timer.

When a timer is updated, the start value described above is subtracted from the current value of the internal CPU
timer to determine the elapsed time. The elapsed time is then compared with the preset to determine the state of
the timer Q bit. The ET and Q members are then updated in the structure allocated for this timer. Note that the

SM Version 1.4 87 14 Series

Basic Instructions

elapsed time is clamped at the preset value (the timer does not continue to accumulate elapsed time
after the preset is reached).

A timer update is performed when and only when:
e Atimer instruction (TON, TOF or TP) is executed
e The "ET" member of the timer structure is referenced directly by an instruction

e The "Q" member of the timer structure is referenced directly by an instruction

5.1.2 Timer programming

The following consequences of timer operation should be considered when planning and creating your user
program:

e You can have multiple updates of a timer in the same scan. The timer is updated each time the timer
instruction (TON, TOF, TP) is executed. However, if you desire to have consistent values throughout a
program scan, then place your timer instruction prior to all other instructions that need these values, and
use tags from the Q and ET outputs of the timer instruction.

e You can have scans during which no update of a timer occurs. It is possible to start your timer in a
function, and then cease to call that function again for one or more scans. If no other instructions are
executed which reference the ET or Q members of the timer structure, then the timer will not be
updated. A new update will not occur until either the timer instruction is executed again or some other
instruction is executed using ET or Q from the timer structure as a parameter.

e Although not typical, you can assign the same timer structure to multiple timer instructions. In general, to
avoid unexpected interaction, you should only use one timer instruction (TON, TOF, TP) per timer
structure.

e Self-resetting timers are useful to trigger actions that need to occur periodically. Typically, self-resetting
timers are created by placing a normally-closed contact which references the timer bit in front of the
timer instruction. This timer network is typically located above one or more dependent networks that use
the timer bit to trigger actions. When the timer expires (elapsed time reaches preset value), the timer bit
is ON for one scan, allowing the dependent network logic controlled by the timer bit to execute. Upon
the next execution of the timer network, the normally closed contact is OFF, thus resetting the timer and
clearing the timer bit. The next scan, the normally closed contact is ON, thus restarting the timer. When
creating self-resetting timers such as this, use the "Q" member of the timer structure as the parameter
for the normally-closed contact in front of the timer instruction.

5.1.3 Time data retention after a RUN-STOP-RUN transition or a CPU power cycle

If a run mode session is ended with stop mode or a CPU power cycle and a hew run mode session is started,
then the timer data stored in the previous run mode session is lost, unless the timer data structure is specified as
retentive (TON, TOF and TP timers).

When you accept the defaults in the call options dialog after you place a timer instruction in the program editor,
you are automatically assigned an instance which cannot be made retentive. To make your timer data retentive,
you must use a global retained instance of that timer.

5.1.4 Assign a global DB to store timer data as retentive data
This option works regardless of where the timer is placed (OB, FC, or FB).
1- Create a global instance of a timer in a reference tag table editor (G).

2- In the "Retain" column, check the box so that the timer structure will be retentive. Repeat this process to
create structures for all the timers that you want to store as retentive timers. Rename the timer
structures if desired.

3- Open the program block for editing where you want to place a retentive timer (OB, FC, or FB).
4- Place the timer instruction at the desired location.

5- On the top of the new timer instruction, type the name (you can use the helper to browse) of the global
instance structure that you created above (example: " StaticTON1").

SM Version 1.4 88 14 Series

Basic Instructions

52 Counters

Table 7-49 Counter instructions

LAD/ FBD Description
<777 Use the counter instructions to count internal program events and external
cTU process events. Each counter uses a structure stored in a system structure to
. =CU a—. .. maintain counter data. You assign the data block when the counter instruction

is placed in the editor.
—R v e CTU s a count-up counter
e CTD is a count-down counter

PV e CTUD is a count-up-and-down counter
<>
cTD
..—CD a—. ..
-0 v
PV
<77>
cTuD
L—Cu QU= ..
..—CD ap—. ..
—R v
—D
PV

Supported Properties: Instruction Type

Q TP

The default counter structures operate as Int data type. For other type of integers select another insruction
from Catalog pane. Example: to have a UDInt counter you should use CTU_UDINT instruction.

Table 7-50 Data types for the parameters

Parameter Data type
CU, CD Bool
R (CTU, CTUD) Bool
LD (CTD, CTUD) Bool

Description

Count up or count down, by one count
Reset count value to zero

Load control for preset value

PV Anyint Preset count value
Q, QU Bool True if CV >= PV
QD Bool TrueifCV <=0

CV Anylint Current count value
NOTICE

The numerical range of count values depends on the data type you select. If the count value is an unsigned
integer type, you can count down to zero or count up to the range limit. If the count value is a signed integer,
you can count down to the negative integer limit and count up to the positive integer limit.

The number of counters that you can use in your user program is limited only by the amount of memory in the
CPU.

SM Version 1.4 89 14 Series

Basic Instructions

These instructions use software counters whose maximum counting rate is limited by the execution rate of the
OB in which they are placed. The OB that the instructions are placed in must be executed often enough to detect
all transitions of the CU or CD inputs.

Q TP

For faster counting operations you should hardware counters. For more info about the hardware counters of
your device see its technical data.

5.2.1 Operation of the counters

Table 7-51 Operation of the CTU counter

CTU operation

The CTU counter counts up by 1 when the value of parameter CU changes from 0 to 1. The CTU timing
diagram shows the operation for an unsigned integer count value (where PV = 3). If the value of parameter CV
(current count value) is greater than or equal to the value of parameter PV (preset count value), then the
counter output parameter Q = 1. If the value of the reset parameter R changes from 0 to 1, then the current
count value is reset to 0.

cu JLTL L T

-

R

Table 7-52 Operation of the CTD counter

CTD Operation
The CTD counter counts down by 1 when the value of parameter CD changes from 0 to 1. The CTD timing
diagram shows the operation for an unsigned integer count value (where PV = 3).

e If the value of parameter CV (current count value) is equal to or less than 0, the counter output
parameter Q = 1.

e If the value of parameter LOAD changes from 0 to 1, the value at parameter PV (preset value) is
loaded to the

e counter as the new CV (current count value).

oo — LIl MM

1 1 1 1
I—I 1 1 1 I_I 1
LOAD — Y=—— . :
1 1 1 1 1 1
! 3 1 1 1 3 1
21 —_2
1
CV O) 0
I

SM Version 1.4 90 14 Series

Basic Instructions

Table 7-53 Operation of the CTUD counter

CTUD operation
The CTUD counter counts up or down by 1 on the 0 to 1 transition of the count up (CU) or count down (CD)
inputs. The CTUD timing diagram shows the operation for an unsigned integer count value (where PV = 4).

e If the value of parameter CV is equal to or greater than the value of parameter PV, then the counter
output parameter QU = 1.

e If the value of parameter CV is less than or equal to zero, then the counter output parameter QD = 1.

e If the value of parameter LOAD changes from 0 to 1, then the value at parameter PV is loaded to the
counter

e asthe new CV.
e If the value of the reset parameter R is changes from 0 to 1, the current count value is reset to 0.

cu Mt n [

CD

-

LOAD

]

Cv

5.2.2 Counter data retention after a RUN-STOP-RUN transition or a CPU power
cycle

If a run mode session is ended with stop mode or a CPU power cycle and a new run mode session is started,
then the counter data stored in the previous run mode session is lost, unless the counter data structure is
specified as retentive (CTU, CTD, and CTUD counters).

When you accept the defaults in the call options dialog after you place a counter instruction in the program editor,
you are automatically assigned an instance DB which cannot be made retentive. To make your counter data
retentive, you must use a global retained instance of that counter.

5.2.3 Assign a global DB to store counter data as retentive data

This option works regardless of where the counter is placed (OB, FC, or FB).

1- Create a global instance of a counter in a reference tag table editor (G). Be sure to consider the Type
you want to use for your Preset and Count values.

Counter Data Type Corresponding Type for the Preset and Count Values
CTU INT

CTU_DINT DINT

CTU_LINT LINT

CTU_UDINT UDINT

SM Version 1.4 91 14 Series

Basic Instructions

CTU_ULINT ULINT
CTD INT
CTD_DINT DINT
CTD_LINT LINT
CTD_UDINT UDINT
CTD_ULINT ULINT
CTUD INT
CTUD_DINT DINT
CTUD_LINT LINT
CTUD_UDINT UDINT
CTUD_ULINT ULINT

2- In the "Retain" column, check the box so that the counter structure will be retentive. Repeat this process
to create structures for all the counters that you want to store as retentive counters. Rename the counter
structures if desired.

3- Open the program block for editing where you want to place a retentive counter (OB, FC, or FB).
4- Place the counter instruction at the desired location.

5- On the top of the new counter instruction, type the name (you can use the helper to browse) of the
global instance structure that you created above (example: " StaticCTU1").

6. Moving and conversion

6.1 Move instructions

Use the Move instructions to copy data elements to a new memory. The source data is hot changed by the move
process.

e The MOVE instruction copies a single data element (Any) from the source address specified by the IN
parameter to the destination addresses specified by the OUT parameter.

e The VAR_MOVE instruction copies a data element by its pointer (Variant) from the source address
specified by the IN parameter to the destination addresses specified by the OUT parameter.

Table 7-54 MOVE instructions

LAD/ FBD Description
MOVE Copies a data element stored at a specified address to a new address or
. . —EN—ENO—. . . multiple addresses.

38— N oum —REE

VAR_MOVE Copies a data element stored at a specified address to a new address by its
P EN—ENO—. . . pointer or multiple addresses.

2777 — N QUT1 — R2rEs

BLK_MOVE copies a block of data elements to a new block.
. .—EN—ENO—. ..
<7 —IN QUT—4<7iE>

<%17> — BUF ERROR —<777>

Supported Properties: Outputs Count (Except BLK_MOVE)

Table 7-55 Data types for the MOVE instruction

Parameter Data type Description
IN Any Source address
ouT Any Destination address

SM Version 1.4 92 14 Series

Basic Instructions

Table 7-56 Data types for the VAR_MOVE instruction

Parameter Data type Description
IN Variant Source address
ouT Variant Destination address

Table 7-57 Data types for the BLK_MOVE instruction

Parameter Data type Description

IN Variant Source element

BUF Byte[*] Moving buffer

ouT Variant Destination element

ERROR Bool True if moving encounter an error

6.2 Accessing data by array indexing

7M0.0

To access elements of an array with a variable, simply use the variable as an
BoolArray[Index] M_Bool

array index in your program logic. For example, the following network sets an
output based on the Boolean value of an array of Booleans in "BoolArray" | { —
referenced by the PLC tag "Index".

6.3 Convert instruction

Table 7-58 Convert instruction

LAD/ FBD Description
CONVERT Converts a data element from one data type to another data type.
.o—EN ENO=—. ..
<3775 — |N QUT —=272>

Supported Properties: Operation Data Type

Table 7-59 Data types for the parameters

Parameter Data type Description

IN Any Input value

ouT Any Input value converted to a new data type
NOTICE

When you convert a tag value to an AnyBit data type tag (such as byte, word, DWord, LWord), the data will be
memory copied to that AnyBit tag and vice versa. Example: if you convert 3.1415 (Real) to a DWord tag
(Destination) the result will be: 1078529622 (16#40490e56)

CONVERT CONVERT
EM ENO EM ENO 1
3.1415 16#40490e56 16%40490e56 3.1415
31415 —IN OUT— DWordTag DWordTag —|IN QOUT—RealTag

Table 7-60 ENO status

ENO | Description
True No error
False | Conversion error

SM Version 1.4 93 14 Series

Basic Instructions

6.4 BCD conversion instructions

Table 7-61 BCD conversion instructions

LAD/ FBD Description
BCD_TO Converts a BCD format data element to an AnyUnsigned data type.
..—EN ENO—. ..
<07%>— N QUT — <7
TO_BCD Converts an AnyUnsigned data type to a BCD format data element.
Lo—EN ENO=—. ..

<77 — M QUT —=277>

Supported Properties: Operation Data Type

Table 7-62 Data types for the BCD_TO instruction

Parameter Data type Description
IN AnyBit Input value
ouT AnyUnsigned Input value converted to a new data type

Table 7-63 Data types for the TO_BCD instruction

Parameter Data type Description
IN AnyUnsigned Input value
ouT AnyBit Input value converted to a new data type

Table 7-64 ENO status

ENO | Description

True No error
False | Conversion error

6.5 Round, ceiling, floor and truncate instructions

Table 7-65 ROUND, CEIL, FLOOR and TRUNC instructions

LAD/ FBD Description
Converts a real number to an integer. The default data type is Int. The real
number fraction is rounded to the nearest integer value (IEEE - round to
ROUND nearest). If the number is exactly one-half the span between two integers (for
. .—EN ENO—... example, 10.5), then the number is rounded to the Nearest whole number. For
example:
77 77
O - e ROUND (10.5) = 11
e ROUND (11.5) =12
CEIL Converts an AnyReal number (Real or LReal) to the closest integer greater
<-—EN ENO—... than or equal to the selected real number (IEEE "round to +infinity").
<8P — N QUT — <?72>
FLOOR Converts an AnyReal number (Real or LReal) to the closest integer smaller
..—EN ENO—... than or equal to the selected real number (IEEE "round to -infinity").
<27 — N ouT — <3925

SM Version 1.4

94 14 Series

Basic Instructions

TRUNC
. —EN ENO=—. ..
2707 — N OUT — R272=

TRUNC converts a real number to an integer. The fractional part of the real
number is truncated to zero (IEEE - round to zero).

Supported Properties: Instruction Type, Operation Data Type

Table 7-66 Data types for the parameters

Parameter Data type Description
IN AnyReal Floating point input
ouT Anylint Converted output

Table 7-67 ENO status

ENO | Description

True | No error

False | Conversion error
6.6 Swap instruction
Table 7-68 SWAP instruction

LAD/ FBD Description

SWAP Reverses the byte order for two-byte, four-byte and eight-byte data elements.
. . —EN—FENO —. . . No change is made to the bit order within each byte.
<887 — N QUT — =?77>

Supported Properties: Operation Data Type

Table 7-69 Data types for the parameters

Parameter Data type Description

IN Word, DWord, LWord Ordered data bytes IN

ouT Word, DWord, LWord Reverse ordered data bytes OUT

Example 1 | Parameter IN = %MBO (before execution) Parameter OUT = %MB4, (after execution)
Address %MBO %MB1 %MB4 %MB5

16#1234 12 34 34 12

Word MSB LSB MSB LSB

Example 2 Parameter IN = %MBO (before execution) Parameter OUT = %MB4, (after execution)
Address %MBO %MB1 %MB2 %MB3 %MB4 %MB5 %MB6 %MB7
16#12345678 |12 34 56 78 78 56 34 12
DWord MSB LSB MSB LSB
SM Version 1.4 95 14 Series

Basic Instructions

6.7 Serialize instruction

Table 7-70 SERIALIZE instruction

LAD/ FBD Description

You can use the "Serialize" instruction to convert several PLC data types

SERIALIZE
C—IN ENO—. .. (QDT), STRUCT or ARRAY of <data type> to a sequential representation
without losing parts of their structure.
<77 — INDEX OUT — <> You use the instruction to temporarily save multiple structured data items from
— your program in a buffer, which should preferably be in an array of byte, and
N send them to another CPU or network.

Supported Properties: None

Table 7-71 Data types for the parameters

Parameter Data type Description

INDEX Anylint Start position of byte array destination buffer
IN Variant Data to be serialized

ouT Byte[*] Serialized stream byte array destination

Table 7-72 ENO status

ENO | Description

True | No error
False | Conversion error

NOTICE

The maximum serializable data length is 1024.

6.8 Deserialize instruction

Table 7-73 DESERIALIZE instruction

LAD/ FBD Description
DESERIALIZE You can use the "Deserialize" instruction to convert back the sequential
< EN ENO—. .. representation of a User data type (UDT), STRUCT or ARRAY of <data

type> and to fill its entire contents.
<777> — INDEX ouT — 22725

<2785 — SOURCE

Supported Properties: None

Table 7-74 Data types for the parameters

Parameter Data type Description

INDEX Anyint Start position of byte array source buffer
SOURCE Byte[*] Source byte array

ouT Variant Deserialized data

SM Version 1.4 96 14 Series

Basic Instructions

Table 7-75 ENO status

ENO | Description
True | No error
False | Conversion error

7. Program Control

7.1 FOR statement

Table 7-76 FOR statement instruction

LAD/ FBD Description
FOR A FOR statement is used to repeat a sequence of networks as long as a control
FROM Sl variable is within the specified range of values. The definition of a loop with FOR
TO <777 includes the specification of an initial and an end value. Both values must be the
BY <777> same type as the control variable.
ouT
END

Supported Properties: None

Table 7-77 Parameters

Parameter | Datatype | Description

FROM AnyInt Required. Simple expression (tag or constant) that specifies the initial value of the
control variables

TO Anylint Required. Simple expression (tag or constant) that determines the final value of
the control variables

BY AnylInt Required. Amount by which an "OUT" is changed after each loop. The "BY" has
the same data type as "OUT"

ouT Anyint Optional. A tag that serves as a loop counter

The FOR statement executes as follows:

e At the start of the loop, the control variable (OUT) is set to the initial value (FROM) and each time the
loop iterates, it is incremented by the specified increment (positive increment) or decremented (negative
increment) until the final value is reached.

e Following each run through of the loop, the condition is checked (final value reached) to establish
whether or not it is satisfied. If the condition is satisfied, the sequence of statements is executed,
otherwise the loop and with it the sequence of statements is skipped.

e The execution scope of a for statement is the networks between the FOR statement and the END
statement. If you put the FOR and END statements in the same network, that network will be the
execution scope of FOR.

e You can use nested FOR loops by placing a FOR statement inside another FOR and before its END
statement.

Example:

SM Version 1.4 97 14 Series

Basic Instructions

¥ Network[0]: Metweork

Comment :
FOR i
FROM <777
&
TO <777
<P7%=— N1 ouT
BY <777 - 6T
out <720 — N2 —— N1 OUT ——EN—ENO—. . .
— N2 <F27=— N1 QuT—kIZE 9
= @
G2 — N our———— =22 —IN2 0}
>
L (o]
¥ MNetwork[1]: Network_1 =3
Comment : 8
FOR] 3 &
FROM <777 @ S
@
e P MOVE CONVERT e
. . —EN—ENO EM ENO=—. . . e
BY <777 L2
=
ouT <77 — N QUT1 — =77 <777 — N ouT — 2772 S]
END o
END S
— o) —
Figure 7-3 An example of nested FOR statements
7.2 WHILE statement
Table 7-78 WHILE statement instruction
LAD/ FBD Description
WHILE The WHILE statement performs a series of statements until a given condition (IN) is
M <777 True.

You can nest WHILE loops. The END statement refers to the last executed WHILE
END instruction.

Supported Properties: None

Table 7-79 Parameters

Parameter | Data type Description

IN Bool Required. A Bool tag that evaluates to True or False.
The WHILE statement executes according to the following rules:
e Prior to each iteration of the loop body, the execution condition is evaluated.

e Once the value FALSE occurs, the loop is skipped and the statement following the loop is executed

/\ WARNING

Always be careful when using the WHILE statement. You must plan a condition for IN parameter to be finally
set to False. If the condition (IN) will be set to always True, then the CPU will get stuck in an infinity loop.

7.3 IF statement

The IF statement is a conditional statement that controls program flow by executing a group of statements, based
on the evaluation of a Bool value of a logical expression. You can also nest or structure the execution of multiple
IF-ELSE statements.

SM Version 1.4 98 14 Series

Basic Instructions

Table 7-80 Elements of the IF statement

LAD/ FBD Description
IF If condition (IN) is True, then execute the following statements until encountering
IN <777> the END statement.
If condition (IN) is False, then skip to END statement (unless the program includes
END optional ELSE_IF or ELSE statements).
Ll The optional ELSE_IF statement provides additional conditions to be evaluated. For
Ih <> example: If condition (IN) in the IF statement is False, then the program evaluates
condition-n (IN). If condition-n is True, then execute statement_N.
END
L The optional ELSE statement provides statements to be executed when the
condition (IN) of the IF statement is False.
END

Supported Properties: None

Table 7-81 Parameters

Parameter | Datatype | Description
IN Bool Required. A Bool tag that evaluates to True or False.

Q TP

You can include multiple ELSE_IF statements within one IF statement.

An IF statement is executed according to the following rules:

e The first sequence of statements whose logical expression = True is executed. The remaining
sequences of statements are not executed.

e If no Boolean expression = True, the sequence of statements introduced by ELSE is executed (or no
sequence of statements if the ELSE branch does not exist).

e Any number of ELSE_IF statements can exist.

Q TP

Using one or more ELSIF branches has the advantage that the logical expressions following a valid
expression are no longer evaluated in contrast to a sequence of IF statements. The runtime of a program can
therefore be reduced.

7.4 RET execution control instruction

The optional RET instruction is used to terminate the execution of the current block. If and only if the RET input
IN is true, then program execution of the current block will end at that point and instructions beyond the RET
instruction will not be executed. If the current block is an OB its execution routine will be terminated until the next
scan. If the current block is a FC or FB, its execution routine will be terminated until the next calling of that
program block.

You are not required to use a RET instruction as the last instruction in a block; this is done automatically for you.
You can have multiple RET instructions within a single block.

Table 7-82 RET execution control instruction

LAD/ FBD Description

Terminates the execution of the current block
RET

SM Version 1.4 99 14 Series

Basic Instructions

Supported Properties: None

Table 7-83 Parameters

Parameter | Data type Description
IN Bool Trigger for termination a program block
/\ WARNING

executing that code.

remains False.
IF

You should keep in mind that all program control instructions prevent part of the program from running unless
certain conditions are met. If there is a structural error in that part of the program that is supposed to be
executed under certain conditions, the CPU may encounter a runtime error that has never been seen before

Example: the following code will not make an index out of range exception until the Condition tag value

1M #Condition
MOVE MOVE
. w=—EN——EMNO EN—ENO—. . .
IN OUT1 —Index IM COUT1 — Array[Index]
END
8. Selection
8.1 Select

Table 7-84 SEL instruction

Description

LAD/ FBD
SEL
. .—EN—ENO—. . .
s —c out — e

<3775 — N1
27775 — N2

Supported Properties: None

Depending on a switch (G input), the "Select" instruction selects one of the inputs,
IN1 or IN2 and copies its content to the OUT output. When the input G has signal
state False, the value at the input IN1 is moved. When the input G has signal state
True, the value at the input IN2 is moved to the output OUT.

All tags at all parameters must have the same data type.

Table 7-85 Data types for the parameters

Parameter | Data type Description

G Bool Switch

IN1 Any First input value
IN2 Any Second input value
ouT Any Result

SM Version 1.4

100

14 Series

Basic Instructions

8.2 Get maximum and minimum

Table 7-86 MAX and MIN instructions

LAD/ FBD Description
MAX The MAX instruction compares the value of two parameters IN1 and IN2 and
. —EN—ENO—. . . assigns the maximum (greater) value to parameter OUT.

<7772 — N1 QuT — =8>
<777 — N2

MIN The MIN instruction compares the value of two parameters IN1 and IN2 and
« —EN—ENO—. . . assigns the minimum (lesser) value to parameter OUT.

=778 — M1 OuT — 2285

27775 — |2

Supported Properties: Instruction Type

Table 7-87 Data types for the parameters

Parameter | Datatype | Description

IN1 Any First input value
IN2 Any Second input value
ouT Any Result

8.3 Limit instruction

Table 7-88 LIMIT instruction

LAD/ FBD Description
LIMIT The Limit instruction tests if the value of parameter IN is inside the value range
. .—EN—ENO—. . . specified by parameters MN and MX and if not, clamps the value at MN or MX.

If the value of parameter IN is within the specified range, then the value of IN is
stored in parameter OUT. If the value of parameter IN is outside of the specified
range, then the OUT value is the value of parameter MN (if the IN value is less

than the MN value) or the value of parameter MX (if the IN value is greater than
29998 — the MX value)

<IN —MN OQUT —§=P8Es

=770 — N

Supported Properties: None

Table 7-89 Data types for the parameters

Parameter | Data type Description

MN Any Minimum value
IN Any Input value

MX Any Maximum value
ouT Any Result

SM Version 1.4 101 14 Series

Basic Instructions

8.4

Table 7-90 MUX instruction

Multiplex instruction

<77 — IN1

<770 — N2

LAD/ FBD Description
MUK MUX copies one of many input values to parameter OUT, depending on the
ComEN O ENO—. L parameter K value.
< — K OUT — =272=

Supported Properties: Inputs Count

Table 7-91 Data types for the parameters

Parameter Data type | Description
K AnylInt e Oselects IN1
e 1 selects IN2
e nselects INn
IN1,IN2,...INn | Any Inputs
ouT Any Output
Table 7-92 ENO status
ENO | Description
True | No error
False | Index (K) out of range
8.5 Check for nullity
Table 7-93 IS_NULL instruction
LAD/ FBD Description
IS_NULL You can use this instruction to query whether the Variant or the reference points
. .—EN—ENO—. . . to a NULL pointer and therefore does not point to an object.
<777>— N Q—<=

Supported Properties: None

Table 7-94 Data types for the parameters

Parameter Data type | Description

IN Variant Input pointer

Q Bool Result
8.6 Check for array
Table 7-95 IS_ARRAY instruction

LAD/ FBD Description

IS_ARRAY You can use this instruction to query whether the Variant points to a tag of the
- EN—ENO—. . . Array data type.
<7273 —IN Q—3<mrs

SM Version 1.4

102

14 Series

Basic Instructions

Supported Properties: None

Table 7-96 Data types for the parameters

Parameter Data type | Description
IN Variant Input pointer
Q Bool Result

8.7 Get array length

Table 7-97 ARRAY_LEN instruction

2727 — M QUT — =277>

LAD/ FBD Description
ARRAY_LEN You can use this instruction to query number of elements in an array.
. »—EN—FENO—. . .

Example: an array defined as Bool[1,2,3] has a length of 1*2*3=6

Supported Properties: None

Table 7-98 Data types for the parameters

Parameter Data type | Description

IN Variant Array pointer

ouT Anyint Array length
9. Time

9.1 Time add and subtract

Table 7-99 T_ADD and T_SUB instructions

<ETEE — N1 OuT —[£iTE=

2778 — N2

LAD/ FBD Description
T_ADD T_ADD adds the input IN1 Time value with the input IN2 Time value. Parameter
--—EN ENO—... OUT provides the Time value result.

<777 — M1 QUT — =277

2778 — N2

T_SUB T_SUB subtracts the IN2 Time value from IN1 Time value. Parameter OUT
..=—EN ENO=—. .. provides the difference value as a Time data type.

Supported Properties: Instruction Type

Table 7-100 Data types for the parameters

Parameter Data type | Description

IN1 Time Time value

IN2 Time Time value to add or subtract
ouT Time Time sum or difference

SM Version 1.4

103

14 Series

Basic Instructions

Table 7-101 ENO status

ENO | Description
True | No error
False | Result out of range
9.2 Time multiplication and division
Table 7-102 T_MUL and T_DIV instructions
LAD/ FBD Description
T_MUL T_MUL multiplies the input IN1 Time value in IN2 value. Parameter OUT provides
Co—EN ENO=—. .. the Time value result.
277> — N1 OUT — %%
<770> — IN2
TDIV T_DIV divides the input IN1 Time by IN2 value. Parameter OUT provides the
..—EN ENO—. .. Time value result.
<125 — N1 OUT —[22285
<77 — N2

Supported Properties: Instruction Type, Operation Data Type

Table 7-103 Data types for the parameters

Parameter Data type | Description

IN1 Time Time value

IN2 AnyNum Multiply or device factor
ouT Time Time sum or difference

Table 7-104 ENO status

ENO | Description
True | No error
False | Result out of range
9.3 Time of day addition and subtraction time
Table 7-105 TOD_T_ADD and TOD_T_SUB instructions
LAD/ FBD Description
TOD_T_ADD TOD_T_ADD adds the input IN1 TimeOfDay value with the input IN2 Time value.
. =—EN ENO—... Parameter OUT provides the TimeOfDay value result.
<12%>—IN1 OUT —[s%%%
<THS — IN2
TOD_T_SUB TOD_T_SUB subtracts the IN2 Time value from IN1 TimeOfDay value.
.=—EN ENO—... Parameter OUT provides the difference value as a TimeOfDay data type.
<777 — N1 OuT — <737
<7773 — IN2

Supported Properties: Instruction Type

SM Version 1.4

104

14 Series

Basic Instructions

Table 7-106 Data types for the parameters

Parameter Data type | Description

IN1 TimeOfDay | Time of day value

IN2 Time Time value to add or subtract
ouT TimeOfDay | Time of day sum or difference

Table 7-107 ENO status

ENO | Description
True | No error
False | Result out of range

9.4 Date addition and subtraction time

Table 7-108 DT_T_ADD and DT_T_SUB instructions

LAD/ FBD Description
DT_T_ADD DT_T_ADD adds the input IN1 DateTime value with the input IN2 Time value.
Co—EN ENO=—. .. Parameter OUT provides the DateTime value result.

2777 — N1 OUT — R272=

<707 — N2

DT_T_SUB DT_T_SUB subtracts the IN2 Time value from IN1 DateTime value. Parameter
. =—EN ENO=—. .. OUT provides the difference value as a DateTime data type.

<00 — N1 OuT — [E28Es

2770 — N2

Supported Properties: Instruction Type

Table 7-109 Data types for the parameters

Parameter Datatype | Description

IN1 DateTime Time of day value

IN2 Time Time value to add or subtract
ouT DateTime Time of day sum or difference

Table 7-110 ENO status

ENO | Description
True | No error
False | Result out of range

9.5 Date subtraction

Table 7-111 D_SUB instruction

LAD/ FBD Description
D_sue D_SUB subtracts the IN2 Date value from IN1 Date value. Parameter OUT
EN ENO—. .. provides the difference value as a Time data type.

<7 — N1 QUT — =272>

TS — IN2

Supported Properties: None

SM Version 1.4 105 14 Series

Basic Instructions

Table 7-112 Data types for the parameters

Parameter Data type | Description

IN1 Date Date value

IN2 Date Date value to subtract
ouT Time Time difference

Table 7-113 ENO status

ENO

Description

True

No error

False | Result out of range

9.6 Time of day subtraction

Table 7-114 TOD_SUB instruction

LAD/ FBD Description
ToD_sus TOD_SUB subtracts the IN2 TimeOfDay value from IN1 TimeOfDay value.
(oEN ENO—. . Parameter OUT provides the difference value as a Time data type.
<378 — N1 OuT —=278s
<3775 — IN2

Supported Properties: None

Table 7-115 Data types for the parameters

Parameter Data type | Description

IN1 TimeOfDay | Time of day value

IN2 TimeOfDay | Time of day value to subtract
ouT Time Time difference

Table 7-116 ENO status

ENO

Description

True

No error

False | Result out of range

9.7 Date and time subtraction

Table 7-117 DT_SUB instruction

LAD/ FBD Description
DT_SUB DT_SUB subtracts the IN2 DateTime value from IN1 DateTime value. Parameter
co—EN ENO=—. .. OUT provides the difference value as a Time data type.
S35 — N1 OUT —[EES
<1705 — N2

Supported Properties: None

Table 7-118 Data types for the parameters

Parameter

Data type

Description

IN1

DateTime

Date and time value

SM Version 1.4

14 Series

Basic Instructions

IN2 DateTime Date and time value to subtract
ouT Time Time difference

Table 7-119 ENO status

ENO | Description
True | No error
False | Result out of range

9.8 Time concatenation

Table 7-120 CONCAT_D_TOD instruction

LAD/ FBD Description
CONCAT_D_TOD CONCAT_D_TOD concatenates the IN2 TimeOfDay value to IN1 Date
o EN ENO—. .. value. Parameter OUT provides the concatenated value as a DateTime
data type.
<7778 — N1 ouT — <278
<777 — N2

Supported Properties: None

Table 7-121 Data types for the parameters

Parameter Data type | Description

IN1 Date Date value

IN2 TimeOfDay | Time of day value to concatenate
ouT DateTime DateTime result

Table 7-122 ENO status

ENO | Description
True | No error
False | Result out of range

10. Character and string

10.1 String data overview

String data is stored as a 64 bytes of ASCII character codes. The number of stored bytes occupied by the String
format is always 64 bytes.

String input and output data must be initialized as valid strings in memory, before execution of any string
instructions.

10.2 String operation instructions

Your control program can use the following string and character instructions to create messages for operator
display and process logs.

SM Version 1.4 107 14 Series

Basic Instructions

10.2.1 LEN
Table 7-123 Length instruction
LAD/ FBD Description
LEN LEN (length) provides the current length of the string IN at output OUT. An empty
. .—EN—FENO—. . . string has a length of zero.
<P —IN OUT— <7

Supported Properties: None

Table 7-124 Data types for the parameters

Parameter Datatype | Description
IN String Input string
ouT Int String length

10.2.2 LEFT and RIGHT

Table 7-125 Left and right substring operations

LAD/ FBD Description
LEFT LEFT (Left substring) provides a substring made of the first L characters of string
..—EN ENO—. .. parameter IN.
<18 — N oUT — <8I
<77 — |
RIGHT RIGHT (Right substring) provides the last L characters of a string.
..—EN ENO=—. ..
<9882 — N OUT —[<77E>
<7 — |

Supported Properties: Instruction Type

Table 7-126 Data types for the parameters

Parameter Data type | Description

IN String Input string

L AnylInt Length of the substring to be created:
e LEFT uses the left-most characters number of characters in the string
e RIGHT uses the right-most number of characters in the string

ouT String Output string

Table 7-127 ENO status

ENO | Description

True No error

False | If L is greater than the current length of the IN string

SM Version 1.4 108

14 Series

Basic Instructions

10.2.3 MID
Table 7-128 middle substring operation
LAD/ FBD Description
MiD MID (Middle substring) provides the middle part of a string. The middle substring
mEN ENO=. .. is L characters long and starts at character position P (inclusive).

S5 — N ouT —[EE

<77 — |

<7775 —p

Supported Properties: None

Table 7-129 Data types for the parameters

Parameter Data type | Description

IN String Input string

L Anyint Length of the substring to be created. It uses the number of characters starting
at position P within the string

P Anyint Position of first substring character to be copied P= 1, for the initial character
position of the IN string

ouT String Output string

Table 7-130 ENO status

ENO | Description
True | No error
False | If the sum of L and P exceeds the current length of the string parameter IN
10.2.4 CONCAT
Table 7-131 Concatenate strings instruction
LAD/ FBD Description
CONCAT CONCAT (concatenate strings) joins string parameters IN1 and IN2 to form one
CoTEN O ENO—. . string provided at OUT. After concatenation, String IN1 is the left part and String
IN2 is the right part of the combined string.
<P — N1 OUT— <772
<29 — N2

Supported Properties: None

Table 7-132 Data types for the parameters

Parameter Data type | Description
IN1 String Input string 1
IN2 String Input string 2
ouT String Combined string (string 1 + string 2)

Table 7-133 ENO status

ENO | Description
True | No error
False | Maximum length of IN1, IN2 or OUT does not fit within allocated memory range

SM Version 1.4 109 14 Series

Basic Instructions

10.2.5 INSERT

Table 7-134 Insert substring instruction

LAD/ FBD Description

INSERT
o= EN——ENO —. . .

Inserts string IN2 into string IN1. Insertion begins after the character at position P.

<7772 — N1 QUT — =777>
<777 — N2

<7{f> —Pp

Supported Properties: None

Table 7-135 Data types for the parameters

Parameter Data type | Description

IN1 String Input string 1

IN2 String Input string 2

P Anyint Last character position in string IN1 before the insertion point for string IN2
ouT String Combined string (string 1 + string 2)

Table 7-136 ENO status

ENO | Description
True | No error
False e Pis greater than length of IN1
e The result length is greater than the max allowed string size
e Pislessthan 0
10.2.6 DELETE
Table 7-137 Delete substring instruction
LAD/ FBD Description
DELETE Inserts string IN2 into string IN1. Insertion begins after the character at position P.
. .—EN—ENO—. . .
S22 —IN OuT—[ETEs
<775 —
<77 —p

Supported Properties: None

Table 7-138 Data types for the parameters

Parameter Datatype | Description

IN1 String Input string

L Anyint Number of characters to be deleted

P AnylInt Position of the first character to be deleted: The first character of the IN string is
position number 0

ouT String Output string

SM Version 1.4

110

14 Series

Basic Instructions

Table 7-139 ENO status

ENO | Description

True | No error

False e Pis greater than length of IN1

e The result length is greater than the max allowed string size
e Pislessthan0

10.2.7 REPLACE

Table 7-140 Replace substring instruction

LAD/ FBD Description
REPLACE Inserts string IN2 into string IN1. Insertion begins after the character at position P.
. —EN—ENO—. . .

If parameter L is equal to zero, then the string IN2 is inserted at position P of

99— w1 ouT—Eee | string IN1 without deleting any characters from string IN1.

If P is equal to one, then the first L characters of string IN1 are replaced with

=S — N2 string IN2 characters.
<T77— |
<7775 —p

Supported Properties: None

Table 7-141 Data types for the parameters

Parameter Data type | Description

IN1 String Input string

IN2 String String of replacement characters

L Anyint Number of characters to replace

P AnylInt Position of first character to be replaced
ouT String Output string

Table 7-142 ENO status

ENO | Description

True | No error

False e Pis greater than length of IN1

e The result length is greater than the max allowed string size
e Pislessthan0

10.2.8 FIND

Table 7-143 Find substring instruction

LAD/ FBD Description
FIND Provides the character position of the substring specified by IN2 within the string
TEN ENO—. IN1. The search starts on the left. The character position of the first occurrence of

IN2 string is returned at OUT. If the string IN2 is not found in the string IN1, then -
IR INT O QUT—EEER | 1 s returned.

<707 — N2

Supported Properties: None

SM Version 1.4 111 14 Series

Basic Instructions

Table 7-144 Data types for the parameters

Parameter Datatype | Description
IN1 String Input string 1
IN2 String Input string 2
ouT String Combined string (string 1 + string 2)

Table 7-145 ENO status

ENO | Description

True No error

False .

P is greater than length of IN1
The result length is greater than the max allowed string size
P is less than 0

SM Version 1.4

112

14 Series

System Instructions

System Instructions

This chapter describes instructions that are not related to the IEC programming standard, but are related to CPU
and its operating system hardware management. System instructions may vary from one CPU model to another
due to their structural differences.

SM Version 1.4 113 14 Series

System Instructions

1. Memory management

1.1 RWW_NVMEM instruction

Table 8-1 Read/Write nonvolatile memory instruction

LAD/ FBD Description
RW_NVMEM Reads tags data from permanent memory or writes (when R/W=True)
. .—EN ENO—. . . them on permanent memory respect to the specified address. Writes the
status on the STT and processed bytes on the CNT.
.= R/W STT—...
<7772 — ADDR CNT—...
<277 — N1

Supported Properties: Inputs Count

Table 8-2 Data types for the parameters

Parameter Datatype | Description
R/W bool Specifies to read the data (R/W=False) or write (R/W=True)
ADDR Anyint Byte address for reading or writing data
IN1...INn Variant Input tags 1...n
STT Int Operation status. -1: failed otherwise: Ok
CNT Anyint The number of written or read bytes
2. System Time Management

2.1 GET_SYS_DT instruction

Table 8-3 Get CPU date and time instruction

LAD/ FBD Description
GET_SY5_DT Gets the current CPU date and time.
. —EN—CENO—. ..
ouT — <278
DAY —...

Supported Properties: None

Table 8-4 Data types for the parameters

Parameter Data type | Description
ouT AnyDate Current system date and time
DAY USINT Day of week

SM Version 1.4

114

14 Series

System Instructions

2.2 SET_SYS_DT instruction

Table 8-5 Get CPU date and time instruction

LAD/ FBD Description
SET_S¥S DT Sets the current CPU date and time.
. .—EN—ENO—. . .
R — N
..— DAY

Supported Properties: None

Table 8-6 Data types for the parameters

Parameter Data type | Description
IN AnyDate Desired system date and time
DAY USINT Day of week

2.3 SYS_TICK instruction

Table 8-7 Get CPU tick time instruction

LAD/ FBD Description
SYS_TICK Gets the current CPU tick time.
. —EN——ENO—. . .
ouT — 5

Supported Properties: None

Table 8-8 Data types for the parameters

Parameter Data type | Description
ouT Time Current CPU tick time
3. Comm ports management

31 SET_SYS_IP

Table 8-9 Set system IP instruction

LAD/ FBD Description
SET_SYS_IP Sets the IP parameters of the device by the specified parameters. Note
CemEN——————ENO—. . . that parameters save only when the instruction executes in startup OB.
55— p This instruction is applicable only for devices that have ethernet port.
<2275 — MASK
<2205 — GATEWAY

Supported Properties: None

SM Version 1.4 115 14 Series

System Instructions

Table 8-10 Data types for the parameters

Parameter Datatype | Description

IP IP_V4 Desired system IP address
MASK IP_V4 Desired system subnet mask
GATEWAY IP_V4 Desired system gateway address

SM Version 1.4

116

14 Series

Communication Instructions

Communication
Instructions

PLCs use built-in ports, such as USB, Ethernet, RS-232, RS-485, or industrial CAN to communicate with external
devices (sensors, actuators) and systems (programming software, SCADA, HMI, other PLCs). Communication is
carried over various industrial network protocols, like Modbus RTU, Modbus TCP, or non-protocols for raw data

transmissions.

SM Version 1.4 117 14 Series

Communication Instructions

1. RS-232 interface

An RS-232 interface is rated for distances up to 15 meters (50 feet). At least three wires are required for an RS-
232 interface. Wires are required for Transmit, Receive and Signal Ground. Some devices support additional
wires for communication handshaking. RS-232 hardware is a full-duplex configuration, having separate Transmit
and Receive lines. Each signal that transmits in an RS-232 data transmission system appears on the interface
connector as a voltage with reference to a signal ground. The RS-232 receiver typically operates within the
voltage range of +3 to +12 and -3 to -12 volts. The recommended cable is up to 15m (50ft) virtually any standard
shielded twisted pair with drain (Belden 9502 or equivalent).

2. RS-485 interface

For multi-drop operation, drivers must be capable of tri-state operation. An RS-485 interface requires at least two
wires. In a two-wire configuration, the same pair of wires is used for Transmit and Receive. The two-wire
configuration utilizes half-duplex communications. Transmit driver circuits are always taken off-line or tri-stated,
when not in use. This tri-state feature reduces the load on the network, allowing more devices, without the need
of special hardware. This interface also uses differential drivers, supporting distances up to 1200 meters (4000
feet). In a differential system the voltage produced by the driver appears across a pair of signal lines that transmit
only one signal. A differential line driver will produce a voltage from 2 to 6 volts across its A and B output
terminals and will have a signal ground (C) connection. Although proper connection to the signal ground is
important, it isn't used by a differential line receiver in determining the logic state of the data line. A differential
line receiver senses the voltage state of the transmission line across two signal input lines, A and B. It will also
have a signal ground (C) that is necessary in making the proper interface connection. If the differential input
voltage Vab is greater than +200 mV the receiver will have a specific logic state on its output terminal. If the input
voltage is reversed to less than -200 mV the receiver will create the opposite logic state on its output terminal.

2.1 Bias resistors

RS-485 networks often require bias, or pull-up and pull-down resistors. These resistors are used to stabilize the
network. By definition, in a MODBUS RTU network, it is the responsibility of the Master to provide this function.
Some systems may function without these stabilizing resistors, but may be more susceptible to communication
errors. Though the pull-up and pulldown resistors are the same, the value of these resistors varies from device to
device.

Q TIP

14 PLCs have an internal biasing circuit so, there is no need for you to bias the bus.

2.2 Termination resistors

Termination resistors are often used to reduce reflections on the network. This problem occurs most with long
wires and high baud rates. Due to variations in wire and equipment, whether or not to use these terminators is
usually determined by system testing. The general rule is to add them only if needed. The resistors are typically
120 ohms, and installed across the Transmit and Receive wire pairs. Normally, one resistor is installed at each

end of each pair of wires.

Rr1200 £ o 3 Rr1200

ZIXI ZIXI

Figure 9-1 Termination of a RS-485 bus

2.3 Shielding and grounding considerations

The signal ground conductor is often overlooked when ordering cable. An extra twisted pair must be specified to
have enough conductors to run a signal ground. A two-wire system then requires two twisted pairs.

SM Version 1.4 118 14 Series

Communication Instructions

It is often hard to quantify if shielded cable is required in an application or not. Since the added cost of shielded
cable is usually minimal it is worth installing the first time.

24 Cable requirements

The type of wire to use will vary with required length. Wire with twisted pairs and an overall shield is used most
often. The shield is tied to earth ground or chassis, and typically at one end only (generally at the Modbus Master
side). The shield is not to be used as a sighal common or ground. The recommended cable is up to 1200m
(4000ft) 24 AWG twisted pair with foil shield and drain wire on each pair (Belden 9841 for 2-wire and 9729 for 4-
wire or equiv.)

3. Controller Area Network (CAN) interface

The CAN communication protocol is a carrier-sense, multiple-access protocol with collision detection and
arbitration on message priority (CSMA/CD+AMP). CSMA means that each node on a bus must wait for a
prescribed period of inactivity before attempting to send a message. CD+AMP means that collisions are resolved
through a bit-wise arbitration, based on a preprogrammed priority of each message in the identifier field of a
message. The higher priority identifier always wins bus access. That is, the last logic high in the identifier keeps
on transmitting because it is the highest priority. Since every node on a bus takes part in writing every bit "as it is
being written," an arbitrating node knows if it placed the logic-high bit on the bus.

The 1SO-11898:2003 Standard, with the standard 11-bit identifier, provides for signaling rates from 125 kbps to 1
Mbps. The standard was later amended with the “extended” 29-bit identifier. The standard 11-bit identifier field
provides for 211, or 2048 different message identifiers, whereas the extended 29-bit identifier in provides for 22°,
or 537 million identifiers. Bus access is event-driven and takes place randomly. If two nodes try to occupy the bus
simultaneously, access is implemented with a nondestructive, bit-wise arbitration. Nondestructive means that the
node winning arbitration just continues on with the message, without the message being destroyed or corrupted
by another node.

The allocation of priority to messages in the identifier is a feature of CAN that makes it particularly attractive for
use within a real-time control environment. The lower the binary message identifier number, the higher its priority.
An identifier consisting entirely of zeros is the highest priority message on a network because it holds the bus
dominant the longest. Therefore, if two nodes begin to transmit simultaneously, the node that sends a last
identifier bit as a zero (dominant) while the other nodes send a one (recessive) retains control of the CAN bus
and goes on to complete its message. A dominant bit always overwrites a recessive bit on a CAN bus.

VcANH
{1 CANH
O {1 cANL
1 0 1
Recessive Dominant Recessive
O———

Figure 9-2 The Inverted Logic of a CAN Bus

The data rate of the bus can reach up to 1 Mbps (for 30m length cable) or up to 8 Mbps for FD (Flexible Datarate)
CAN.

4, Ethernet interface

Ethernet was first developed in the 1970s and was later standardized as IEEE 802.3. Ethernet is the group of
local area network (LAN) products covered by IEEE 802.3—a group of Institute of Electrical and Electronics
Engineers (IEEE) standards that define the physical layer and data link layer of a wired Ethernet media access
control.1 These standards also describe the rules for configuring an Ethernet network and how the elements of
the network work with one another. Ethernet allows computers to connect over one network. Ethernet is the
global standard for a system of wires and cables to conjoin multiple computers, devices, machines, etc., over an

SM Version 1.4 119 14 Series

Communication Instructions

organization’s single network so that all the computers can communicate with one another. Ethernet began as a
single cable, making it possible for multiple devices to be connected on one network. Now, an Ethernet network
can be expanded to new devices as needed. Ethernet is now the most popular and widely used network
technology in the industry. With industrial Ethernet, data transmission rates range from 10 Mbps to 1 Gbps.
However, 100 Mbps is the most popular speed used in industrial Ethernet applications.

While there are several Industrial Ethernet protocols to support a variety of communication requirements in the
industrial automation, there are four major protocols.

4.1 Modbus TCP/IP

Modbus TCP/IP was the first Industrial Ethernet protocol introduced, and it is essentially a traditional Modbus
communication that is compressed within an Ethernet transport layer protocol for transferring discrete data
between control devices. It uses a simple master-slave communication where the “slave” node will not transmit
data without a request from the “master” node, but it is not considered a real-time protocol.

4.2 EtherCAT

Introduced in 2003, EtherCAT is an Industrial Ethernet protocol that offer real-time communication in a
master/slave configuration for automation systems. The key element of EtherCAT is the ability for all networked
slaves to extract only the relevant information they need from the data packets and insert data into the frame as it
transmits downstream.

4.3 Ethernet/IP

Initially released in 2000, Ethernet/IP is a widely used application-layer Industrial Ethernet protocol supported by
the Open Device Vendors Association (ODVA) and supplied primarily by Rockwell Automation. It is the only
Industrial Ethernet protocol that is based entirely on Ethernet standards and uses standard Ethernet physical,
data link, network and transport layers. Since it uses standard Ethernet switching, it can support an unlimited
number of nodes. However, it requires limited range to avoid latency and support real-time communication.

4.4 PROFINET

An application protocol developed by Siemens in conjunction with member companies of a Profibus user
organization. It essentially extends Profibus 1/0 controller communication to Ethernet using special switches that
are integrated into devices.

5. Programming instructions

51 Serial

511 SERIAL_INIT instruction

Table 9-1 Serial port initialize instruction

LAD/ FBD Description
SERIAL_INIT SERIAL_INIT allows you to change port parameters such as baud rate
. .—EN ENO—. . . from your program.
%7779 — pORT You can set up the initial static configuration of the port in the device
configuration properties, or just use the default values. You can
<775 — BAUDRATE execute the SERIAL_INIT instruction in your program to change the

configuration. Data bits will be set always to 8.

<T7%> — PARITY
<71?> — STOP_BITS

Supported Properties: None

SM Version 1.4 120 14 Series

Communication Instructions

Table 9-2 Data types for the parameters

Parameter Datatype | Description

PORT AnylInt Desired system port identifier. It starts by 0. For other ports identifier see device
technical data

BAUDRATE | Anyint Port baud rate. 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600,
76800, 115200

PARITY AnylInt Port parity. 0 = No parity, 1 = Even parity, 2 = Odd parity

STOP_BITS | Anyint Stop bits. 0 = No stop bit, 1 = One stop bit, 2 = Two stop bit

Table 9-3 ENO status

ENO | Description
True | No error
False | One or more configs is not specified correctly

51.2 SERIAL_GET_STAT instruction

Table 9-4 Serial port get status instruction

LAD/ FBD Description
SERIAL_GET_STAT SERIAL_INIT allows you to change port parameters such as baud rate
.= EN ENO—. . . from your program.

You can set up the initial static configuration of the port in the device

<2775 — PORT BUF_LVL)) . .
configuration properties, or just use the default values. You can
OVR—. execute the SERIAL_INIT instruction in your program to change the
configuration. Data bits will be set always to 8.
BUSY —.

Supported Properties: None

Table 9-5 Data types for the parameters

Parameter Data type | Description

PORT AnylInt Desired system port identifier. It starts by 0. For other ports identifier see device
technical data

BUF_LVL AnylInt Current received bytes count in the buffer.

OVR Bool Overflow flag. When the serial receiving buffer overflows it means that the
incoming data length is greater than the buffer size so, a part of data has been
dropped

Busy Bool Busy flag. When the serial port is receiving data or transmitting data this flag will
be True.

Table 9-6 ENO status

ENO | Description
True | No error
False | One or more configs is not specified correctly

SM Version 1.4 121 14 Series

Communication Instructions

513 SERIAL_READ_ BUF instruction
Table 9-7 Serial read buffer instruction
LAD/ FBD Description
SERIAL_READ_BUF SERIAL_READ_BUF allows you to read the input data received in
+ - EN ENO—. .. serial buffer and store it in an external Byte array.
23375 — poRT COUNT —. ..
777> — BUFFER

Supported Properties: None

Table 9-8 Data types for the parameters

Parameter Data type | Description

PORT Anyint Desired system port identifier. It starts by 0. For other ports identifier see device
technical data

BUFFER Byte[*] Destination buffer for storing data

COUNT AnylInt The length of the data stored in the buffer

Table 9-9 ENO status

ENO | Description

True | No error

False | One or more configs is not specified correctly
514 SERIAL_SEND_BUF instruction

Table 9-10 Serial send buffer instruction

LAD/ FBD

Description

SERIAL_SEND_BUF

SERIAL_SEND_BUF allows you to transmit the input data stored in

- —EN ENO—=. .. Byte array buffer on the serial port.
<777 — PORT
7775 — ADDR
<#955 — counT

<777> — BUFFER

Supported Properties: None

Table 9-11 Data types for the parameters

Parameter Data type | Description

PORT AnylInt Desired system port identifier. It starts by 0. For other ports identifier see device
technical data

ADDR Anyint The start position on the buffer to be sent

COUNT AnylInt The length of data to be sent

BUFFER Byte[*] Source buffer containing data

SM Version 1.4

122

14 Series

Communication Instructions

Table 9-12 ENO status

ENO | Description
True | No error
False | One or more configs is not specified correctly or the port is busy

6. Modbus communication

6.1 Overview of Modbus RTU and TCP communication

6.1.1 Modbus function codes

e A CPU operating as a Modbus RTU master (or Modbus TCP client) can read/write both data and I/O
states in a remote Modbus RTU slave (or Modbus TCP server). Remote data can be read and
processed in the user program.

e A CPU operating as a Modbus RTU slave (or Modbus TCP server) allows a supervisory device to
read/write both data and 1/O states in a remote CPU. The supervisor device can write new values in
remote CPU memory that can be processed in the user program.

Table 9-13 Read data functions: Read remote 1/0O and program data

Modbus function code Read slave (server) functions - standard addressing

01 Read output bits: 1 to 2000 bits per request

02 Read input bits: 1 to 2000 bits per request

03 Read Holding registers: 1 to 125 words per request
04 Read input words: 1 to 125 words per request

Table 9-14 Write data functions: Write remote 1/0O and modify program data

Modbus function code Write slave (server) functions - standard addressing

05 Write one output bit: 1 bit per request
06 Write one holding register: 1 word per request
16 Write one or more holding registers: 1 to 123 words per request

e Modbus ID 0 broadcasts a message to all slaves (with no slave response). The broadcast function is not
available for Modbus TCP, because communication is connection based.

Table 9-15 Modbus network station addresses

Station Address
RTU station 1to 247
TCP station IP address and port number

6.1.2 Modbus memory addresses

The actual number of Modbus memory addresses available depends on the CPU model, how much application
memory exists, and how much CPU memory is used by other program data.
The table below gives the nominal value of the address range.

Table 9-16 Modbus memory addresses

Station Address range
RTU station 1K
TCP station 1K

6.1.3 Modbus RTU communication

Modbus RTU (Remote Terminal Unit) is a standard network communication protocol that uses the RS485
electrical connection for serial data transfer between Modbus network devices.

SM Version 1.4 123 14 Series

Communication Instructions

Modbus RTU uses a master/slave network where all communications are initiated by a single Master device and
slaves can only respond to a master’s request. The master sends a request to one slave address and only that
slave address responds to the command.

6.1.4 Modbus TCP communication

Modbus TCP (Transmission Control Protocol) is a standard network communication protocol that uses the
Ethernet connector on the CPU for TCP/IP communication. No additional communication hardware module is
required.

Modbus TCP uses Open User Communications (OUC) connections as a Modbus communication path. Multiple
client-server connections may exist. Mixed client and server connections are supported up to the maximum
number of connections allowed by the CPU model (see technical data).

A Modbus TCP client (master) must control the client-server connection with the DISCONN parameter. The basic
Modbus client actions are shown below.

Initiate a connection to a particular server (slave) IP address and IP port number
Initiate client transmission of a Modbus messages and receive the server responses

When desired, initiate the disconnection of client and server to enable connection with a different server.

Q TP

You can change the default port number for Modbus TCP server in Online & Diagnostic/Options.

6.1.5 Modbus RTU instructions in your program

¢ MB_MASTER: The Modbus master instruction enables the CPU to act as a Modbus RTU master device
and communicate with one or more Modbus slave devices.

e MB_SLAVE: The Modbus slave instruction enables the CPU to act as a Modbus RTU slave device and
communicate with a Modbus master device.
6.1.6 Modbus TCP instructions in your program

e MB_CLIENT: Make client-server TCP connection, send command message, receive response, and
control the disconnection from the server.

e MB_SERVER: Connect to a Modbus TCP client upon request, receive Modbus message, and send
response.

6.2 Modbus RTU

6.2.1 MB_SLAVE

LAD/ FBD Description
MB_SLAVE The MB_SLAVE instruction allows your program to communicate as
- —EN ENO—=. . . a Modbus slave through a RS485. When a remote Modbus RTU
master issues a request, your user program responds to the request
€378> — PORT by MB_SLAVE execution. Your program must config the port by an
execution of the SERIAL_INIT instruction before start the
<377> — SLAVE_ID MB SLAVE.

<7175 — REG_ADDR
€2%%5 — REG_COUNT
— STOP

Supported Properties: None

SM Version 1.4 124 14 Series

Communication Instructions

Table 9-17 Data types for the parameters

Parameter Data type

Description

PORT Anylint
SLAVE_ID Anyint

REG_ADDR | Anyint

REG_COUNT | Anylint

STOP Bool

Table 9-18 ENO status

ENO | Description

Desired system port identifier. It starts by 0. For other ports identifier see device

technical data

The station address of the Modbus slave in standard addressing range (1 to

247)

Pointer to the Modbus Holding Register in the bit memory (M). Specifies the
starting register address (word address) of the data to be accessed by other
masters in M memory.

Holding Registers data Length: Specifies the number of words to be accessed
in by other masters in M memory.

Starts or stops the MB_SLAVE functions.
e Null or False: Start

e True: Stop

True No error

False | One or more configs is not specified correctly:

e The serial port is not initialized

e PORT is out of range

e SLAVE_ID =

0

e REG_ADDR + REG_COUNT is greater than the allowed memory area size
e REG_COUNT is greater than 1024

Table 9-19 Supported function codes and mapping of Modbus addresses to the

Function | Address range | Bit memory (M) range Operation and data

code

3 0to REG_ADDR to REG_COUNT-1 Read Holding registers

6 REG_COUNT-1 Write one holding register

16 Write multiple holding registers

The following table shows examples of Modbus address to holding register mapping that is used for Modbus
function codes 03 (read words), 06 (write word), and 16 (write words). The actual upper limit of bit memory (M)
address is determined by the maximum application memory limit and M memory limit, for each CPU model.

Table 9-20 Mapping of Modbus addresses to CPU memory

Modbus Master Address

Word address

Example for M address when REG_ADDR=16

g~ |wW NFL O

REG_ADDR
REG_ADDR+1
REG_ADDR+2
REG_ADDR+3
REG_ADDR+4
REG_ADDR+5

Modbus slave communication rules

Y%MW32
%MW34
%MW36
%MW38
%MW40
%MW42

e SERIAL_INIT must be executed to configure a port, before a MB_SLAVE instruction can communicate

through that port.

e Ifaportistorespond as a slave to a Modbus master, then do not program that port with the
MB_MASTER instruction.

SM Version 1.4

125 14 Series

Communication Instructions

Only one instruction call of MB_SLAVE can be used with a given port, otherwise erratic behavior may

occur.

The MB_SLAVE instruction must execute only one time in your program. Then its internal functions will
be executed periodically at a rate that allows it to make a timely response to incoming requests from a
Modbus master. It is recommended that you execute MB_SLAVE in a Startup OB or in other OBs only
one time at the CPU startup. Executing MB_SLAVE from a cyclic interrupt OB is not possible.

Modbus signal timing

Modbus slave functions will be executed periodically after calling MB_SLAVE instruction to receive each request
from the Modbus master and then respond as required. The frequency of execution for MB_SLAVE is dependent
upon the response timeout period of the Modbus master. This is illustrated in the following diagram.

CRC

T Response timeout period
ADR | FC DATA CRC
Master sends Slave sends |
— > < —
Response
Start delay time
Interval = 3.5 characters times ADR| FC DATA CRC

ADR

Start
interval

The response timeout period is the amount of time a Modbus master waits for the start of a response from a
Modbus slave. This time period is not defined by the Modbus protocol, but is a parameter of each Modbus
master. The frequency of execution (the time between one execution and the next execution) of MB_SLAVE

must be based on the particular parameters of your Modbus master.

6.2.2

Modbus RTU slave example program

SERIAL_INIT shown below Initializes the RS485 port parameters at the CPU startup by the first scan flag or each
time they are changed by an HMI device (by the “Reconfig” flag). Then, the Modbus slave stops and starts again
in order to new configuration take effect.

The Modbus holding register is configured for 512 words starting at %MWO.

#lnitialCall SERIAL_INIT MB_SLAVE MB_SLAVE ReConfig
EN ENO EN ENO EN ENQ ———————(R)}—1
0 PORT 0 PORT 0 PORT
Baudrate — BAUDRATE 18 — SLAVE_ID 18 —SLAVEID
1 PARITY 0 REG_ADDR 0 REG_ADDR
1 —STOR_BITS 512— REG_COUNT 512— REG_COUNT
True—STOP « .= STOP
ReConfig
SM Version 1.4 126 14 Series

Communication Instructions

6.2.3 MB_MASTER

Table 9-21 MB_MASTER instruction

LAD/ FBD Description
MB_MASTER The MB_MASTER instruction communicates as a Modbus master
- EN ENO—. .. using a port that was configured by a previous execution of the
SERIAL_INIT instruction.
27775 — poRT STAT
<277 — 1D ERROR —.
<775 —FC BUSY —.

<#7%> — REG_ADDR

<7175 — REG_COUNT
— R/W32

<878 — TIMEQUT

<777> — BUFFER

Supported Properties: None

Table 9-22 Data types for the parameters

Parameter Data type | Description

PORT Anyint Desired system port identifier. It starts by 0. For other ports identifier see device
technical data

ID Anyint Modbus RTU station address. The value of 0 is reserved for broadcasting a

message to all Modbus slaves. Modbus function codes 05, 06, 15 and 16 are
the only function codes supported for broadcast.

FC AnylInt Function code.

REG_ADDR AnylInt Starting Address in the slave: Specifies the starting register address (word
address) of the data to be accessed in the Modbus slave.

REG_COUNT | Anylint Data Length: Specifies the number of bits or words to be accessed in this
request. See the Modbus functions table below for valid lengths.

R/W32 Bool False = Normal Modbus operation

True = Concatenates two consecutive registers. When the R/W32 is True the
BUFFER must be DWord array.

TIMEOUT Anyint Amount of time (in milliseconds) to wait for a blocked Modbus Master
instruction before removing this instruction as being ACTIVE. This can occur,
for example, when a Master request has been issued and then the program
stops calling the Master function before it has completely finished the request.
The time value must be greater than 0 and less than 65535 milliseconds, or an
error occurs.

BUFFER AnyBit[*] Source buffer containing data. When you access data by 01,02 and 05 the
BUFFER data type must be an array of Bool, otherwise an array of Word.

STAT Anyint Execution condition code

ERROR Anyint The ERROR bit is True for one scan, after the MB_CLIENT execution was

terminated with an error. The error code value at the STAT parameter is valid
only during the single cycle where ERROR = True.
Busy Bool e False = No MB_CLIENT operation in progress
e True = MB_CLIENT operation in progress

SM Version 1.4 127 14 Series

Communication Instructions

Table 9-23 ENO status

ENO | Description

True | No error

False | One or more configs is not specified correctly
e Invalid value for TIMEOUT
e Invalid datatype for BUFFER

Modbus master communication rules

e SERIAL_INIT must be executed to configure a port before a MB_MASTER instruction can communicate
with that port.

If a port is to be used to initiate Modbus master requests, that port should not be used by MB_SLAVE .
One or more MB_MASTER execution can be used with that port.

The Modbus instructions do not use communication interrupt events to control the communication
process. Your program must poll the MB_MASTER instruction for transmit and receive complete
conditions.

It is recommended that you call all MB_MASTER execution for a given port from a loop executer OB.
Modbus master instructions may execute in only one of the program cycle or cyclic/time of day
execution levels. They must not execute in both execution priority levels. Pre-emption of a Modbus
Master instruction by another Modbus master instruction in a higher priority execution priority level will
result in improper operation. Modbus master instructions must not execute in the startup or stop OBs.

e Once a master instruction initiates a transmission, this instruction must be continually executed with the
EN input enabled until a BUSY=False state or ERROR<>0 state is returned. A particular MB_MASTER
is considered active until one of these two events occurs. While an instruction is active, any call to any
other instruction will result in an error. If the continuous execution of the original instruction stops, the
request state remains active for a period of time specified by the TIMEOUT input. Once this period of
time expires, the next master instruction called will become the active instance. This prevents a single
Modbus master instance from monopolizing or locking access to a port. If the original active instruction
is not enabled then the next instruction will be executed.

Modbus function codes

The MB_MASTER instruction uses a Function Code input (FC) determine the Function Code that is used in the
actual Modbus message. The following table shows the eligible Modbus function codes.

Table 9-24 Modbus functions

Function code Data length Operation and data

3 1to 123 Read Holding registers

6 1 Write one holding register

16 1to 123 Write multiple holding registers

Status codes

Table 9-25 MB_MASTER execution condition codes (communication and configuration errors)

STATUS Description
0 No error
255 Slave timeout. Check baud rate, parity, and wiring of slave.

Invalid Modbus station address

18 Invalid function code

16 Invalid port ID value or error with INIT_SERIAL instruction

129 Invalid Data Address value

17 Invalid Data Length value

254 The message was terminated as a result of the specified length exceeding the total
buffer size.

130 Data value error

SM Version 1.4 128 14 Series

Communication Instructions

6.2.4 Modbus RTU master example program

RS-485 port is initialized only once during start-up by using SERIAL_INIT triggered by the first scan flag.
Execution of SERIAL_INIT in this manner should only be done when the serial port configuration will not change

at runtime.

One MB_MASTER instruction is used in the cyclic program OB to communicate with a single slave. Additional
MB_MASTER instructions can be used in the OB to communicate with other slaves, or one MB_MASTER
instruction could be re-used to communicate with additional slaves.

#InitialCall SERIAL_INIT
— ———n ENO ———————1
0 —PORT
Baudrate — BAUDRATE
1 — PARITY
1 —STOP_BITS
ReadPressure MB_MASTER ReadPressure
— ———n eNg ———— (R}—1
0 —PORT STAT — MB_Stat
1 —Ip ERROR
03 —FC BUSY —.
100 — REG_ADDR
1 — REG_COUNT
— R/W32
100—TIMEQUT
#WordBuff...— BUFFER
ME_Stat CONVERT
—] ==} EN ENQ ——————
#WordBuff...— N QUT —#Pressure
6.3 Modbus TCP
6.3.1 MB_SERVER
Table 9-26 MB_SERVER instruction
LAD/ FBD Description
MB_SERVER MB_SERVER communicates as a Modbus TCP server through the
. .—EN ENO—. . . Ethernet connector on the CPU (all CPU models may not must
support). No additional communication hardware module is required.
<7773 — IP_LIST

<%7%> — REG_ADDR

<878 — REG_COUNT

— STOP

MB_SERVER can accept a request to connect with Modbus TCP
client, receive a Modbus function request, and send a response
message.

SM Version 1.4

129 14 Series

Communication Instructions

Supported Properties: None

Table 9-27 Data types for the parameters

Parameter Datatype | Description

IP_LIST IP_V4[*] An array of IP_V4 structure for eligible clients that connect this server. All
requests from other clients that are not mentioned in this array will be ignored.
The maximum length of the array is 4.

REG_ADDR AnylInt Pointer to the Modbus Holding Register in the bit memory (M). Specifies the
starting register address (word address) of the data to be accessed by other
masters in M memory.

REG_COUNT | Anyint Holding Registers data Length: Specifies the number of words to be accessed
in by other masters in M memory.
STOP Bool Starts or stops the MB_SERVER functions.
e Null or False: Start
e True: Stop

This allows your program to control when a connection is accepted. Whenever
this input is enabled, no other operation will be attempted.

Table 9-28 ENO status

ENO | Description

True | No error

False | One or more configs is not specified correctly
e REG_ADDR + REG_COUNT is greater than the allowed memory area size
e REG_COUNT is greater than 1024
e IP_V4 array length is greater than 4

Table 9-29 Supported function codes and mapping of Modbus addresses to the

Function | Address range | Bit memory (M) range Operation and data

code

03 Oto REG_ADDR to REG_COUNT-1 Read Holding registers

06 REG_COUNT-1 Write one holding register

16 Write multiple holding registers

The following table shows examples of Modbus address to holding register mapping that is used for Modbus
function codes 03 (read words), 06 (write word), and 16 (write words). The actual upper limit of bit memory (M)
address is determined by the maximum application memory limit and M memory limit, for each CPU model.

Table 9-30 Mapping of Modbus addresses to CPU memory

Modbus Client Address Word address Example for M address when REG_ADDR=16
0 REG_ADDR %MW32
1 REG_ADDR+1 %MW34
2 REG_ADDR+2 %MW36
3 REG_ADDR+3 %MW38
4 REG_ADDR+4 %MW40
5 REG_ADDR+5 %MW42

Q TP

Multiple server connections may be created. This permits a single PLC to establish concurrent connections to
multiple Modbus TCP clients. The maximum number of Open User Communications connections allowed by
the PLC is 4.

SM Version 1.4 130 14 Series

Communication Instructions

Q TIP

The default MB_SERVER port is 502. If you want to change the port value, go to “Online &
Diagnostic”/Options.

6.3.2

MB_SERVER example

The Modbus holding register is configured for 1024 words starting at %MWO.

The IPList is an array with two elements of IP_V4 structure.

1024 — REG_COUNT

.. .= STOP

'] ~ IPList 1P_V4[2]
ElnitialCall MEB_SERVER ; - |:L‘it[:.j :J:;Iv;[
v Ed Sint{4
= ENO 9 IP[0 USInt 132
10 IP[1 USInt 168
#IPList— IP_LIST 1 IP[2 USint 1
12 IP[3 USInt 2
0 —REG_ADDR 13 PORT Ulnt 0

~ IPList{1] IP_v4

14
LE]
16
17
18
19
20

- P USInt{4]
P[0 USInt 192
1P[l USInt 168
IP[2 USInt 1
1P USInt EE]
PORT Ulnt 0

Two clients (192.168.1.32 and 192.168.1.33) will be allowed to transfer data to the server.

6.3.3

MB_CLIENT

Table 9-31 MB_CLIENT instruction

LAD/ FBD Description
MB_CLIENT MB_CLIENT communicates as a Modbus TCP client through the
- —EN ENO—. . . Ethernet connector on the CPU. No additional communication

hardware module is required.

<7775 — REQ STAT . .
MB_CLIENT can make a client-server connection, send a Modbus

58— pw ERROR —. function request, receive a response, and control the disconnection
from a Modbus TCP server.

<7775 — REG_ADDR BUSY —.

<777> — REG_COUNT

<777 — |p

<?77=— D

<2225 — TIMEOUT

— DISCONN
<7775 — BUFFER

Supported Properties: None

Table 9-32 Data types for the parameters

Parameter Data type | Description

REQ Bool False = No Modbus communication request
True = Request to communicate with a Modbus TCP server

R/W Bool Specifies condition whether write data to server (Function code 16) or read data
from server (Function code 03).

REG_ADDR Anyint Starting Address in the slave: Specifies the starting register address (word

address) of the data to be accessed in the Modbus slave.

SM Version 1.4

131 14 Series

Communication Instructions

REG_COUNT | Anylint Data Length: Specifies the number of bits or words to be accessed in this
request. See the Modbus functions table below for valid lengths.

IP IP_V4 Modbus TCP server IP address.32-bit IPv4 IP address of the Modbus TCP
server to which the client will connect and communicate using the Modbus TCP
protocol.

ID AnylInt ID for Modbus TCP server socket. You can communicate concurrently up to 2
Modbus TCP server. 0 or 1

TIMEOUT AnylInt Amount of time (in milliseconds) to wait for a blocked Modbus Client instruction

before removing this instruction as being ACTIVE. This can occur, for example,
when a client request has been issued and then the program stops calling the
client function before it has completely finished the request.

DISCONN Bool The DISCONN parameter allows your program to control connection and
disconnection with a Modbus server device.
If DISCONN <> True and a connection does not exist, then MB_CLIENT
attempts to make a connection to the assigned IP address and port number. If
DISCONNECT = True and a connection exists, then a disconnect operation is
attempted. Whenever this input is enabled, no other operation will be

attempted.
BUFFER Word[*] Source buffer containing data.
STAT Anyint Execution condition code.
ERROR Bool The ERROR bit is True for one scan, after the MB_CLIENT execution was

terminated with an error. The error code value at the STAT parameter is valid
only during the single cycle where ERROR = True.

Busy Bool e False = No MB_CLIENT operation in progress
e True = MB_CLIENT operation in progress

Table 9-33 ENO status

ENO | Description

True | No error
False | One or more configs is not specified correctly

REQ parameter

False = No Modbus communication request True = Request to communicate with a Modbus TCP server If no
instruction of MB_CLIENT is active and parameter DISCONN=False, when REQ=True a new Modbus request
will start. If the connection is not already established then a new connection will be made.

As soon as the current request is completed, a new request can be processed if MB_CLIENT is executed with
REQ=True.

BUFFER parameter

Assigns a buffer to store data read/written to/from a Modbus TCP server. The data buffer must be an array of
Word in local or global memory.

Status codes

Table 9-34 MB_MASTER execution condition codes (communication and configuration errors)

STATUS Description

0 Disconnected from server

256 Connecting to server

257 Connected to server

258 Server timeout. Check server IP address, port and wiring

21 The message was terminated as a result of the specified length exceeding the total
buffer size.

22 Server error

23 Invalid Data Address value, Invalid Data Length value

Only 1 client can be active at any given time. Once a client completes its execution, the next client begins
execution. Your program is responsible for the order of execution.

SM Version 1.4 132 14 Series

Communication Instructions

Modbus client requests can be sent over different connections. To accomplish this, different IP addresses, and

connection IDs must be used.

NOTICE

You can connect to a maximum of two different servers by MB_CLIENT instructions simultaneously.

6.3.4 MB_CLIENT example

Read holding register words.

MB_CLIENT
—EN ENO—. ..
True— REQ STAT
False =— R/AN ERROR —.
0 — REG_ADDR BUSY —.

4 — REG_COUNT

#ServerlP— |P
1 D

100— TIMEQUT

— DISCONN

#DataBuffer— BUFFER

Request to write on server holding registers.

MB_CLIENT
—EN ENO=—. . .
True— RECH STAT
True— R/W ERROR —.
0 —REG_ADDR BUSY —.

4 — REG_COUNT

F3erverlP — IP
1 D

100 — TIMEQUT

— DISCONN

#DataBuffer— BUFFER

SM Version 1.4

133

14 Series

IEC 61131-3 Solutions

IEC 61131-3 Solutions

This chapter provides IEC 61131-3 examples implementation that you can apply in your projects based on your
needs. To see the source of these solutions you can see ANNEX F in Second edition of IEC 61131-3 standard
documentation. All of these solutions are pre-compiled function blocks written by FBD language. By placing each
of them on a network its source FB will be included in system program blocks.

SM Version 1.4 134 14 Series

IEC 61131-3 Solutions

1. CMD_MONITOR instruction

Table 10-1 CMD_MONITOR FB instruction

LAD/ FBD Description
<> Example function block CMD_MONITOR illustrates the control of an
CMD_MONITOR operative unit which is capable of responding to a Boolean command
. —EN———ENO—. .. (the CMD output) and returning a Boolean feedback signal (the FDBK
input) indicating successful completion of the commanded action. The
— AUTO_CMD CMD — function block provides for manual control via the MAN_CMD input, or
automated control via the AUTO_CMD input, depending on the state of
— AUTO_MODE ALRM — the AUTO_MODE input (0 or 1 respectively). Verification of the
MAN_CMD input is provided via the MAN_CMD_CHK input, which must
— MAN_CMD be 0 in order to enable the MAN_CMD input.
— MAN_CMD_CHK If confirmation of command completion is not received on the FDBK input
within a predetermined time specified by the T_CMD_MAX input, the
T_CMD_MAX command is cancelled and an alarm condition is signaled via the ALRM
output. The alarm condition may be cancelled by the ACK (acknowledge)
— FDBK input, enabling further operation of the command cycle.
— ACK

Supported Properties: None

Table 10-2 Data types for the parameters

Parameter Data type | Description

AUTO_CMD Bool Automated command

AUTO_MODE Bool AUTO_CMD enable

MAN_CMD Bool Manual Command

MAN_CMD_CHK | Bool Negated MAN_CMD to debounce

T _CMD_MAX Time Max time from CMD to FDBK

FDBK Bool Confirmation of CMD completion by operative unit
ACK Bool Acknowledge/cancel ALRM

CMD Bool Command to operative unit

ALRM Bool T_CMD_MAX expired without FDBK

2. STACK_INT FB instruction

Table 10-3 STACK_INT FB instruction

LAD/ FBD Description
<777> This function block provides a stack of up to 128 integers. The usual
STACK_INT stack operations of PUSH and POP are provided by edge-triggered
. =—EN—————ENO—. . . Boolean inputs. An overriding reset (R1) input is provided; the maximum
stack depth (N) is determined at the time of resetting. In addition to the
— PUSH EMPTY — top-of-stack data (OUT), Boolean outputs are provided indicating stack
empty and stack overflow states.
—POP OFLO—
—FR1 ouT
XN
N

Supported Properties: None

SM Version 1.4 135 14 Series

IEC 61131-3 Solutions

Table 10-4 Data types for the parameters

Parameter Data type | Description

PUSH Bool Basic stack operations
POP Bool Basic stack operations

R1 Bool Over-riding reset

XIN Int Input to be pushed

N Int Maximum depth after reset
EMPTY Bool Stack empty

OFLO Bool Stack overflow

ouT Int Top of stack data

3. LAG1 FB instruction

Table 10-5 LAG1 FB instruction

LAD/ FBD

Description

277>

LAGIT

— XIN

—TAU

— CYCLE

o= EN—ENO—. . .

=—RUN XOUT—.

This function block implements a first-order lag filter.

Supported Properties: None

Table 10-6 Data types for the parameters

Parameter Data type | Description

RUN Bool 1 =run, O = reset

XIN Real Input variable

TAU Time Filter time constant
CYCLE Time Sampling time interval
XOUT Real Filtered output

4. DELAY FB instruction

Table 10-7 DELAY FB instruction

LAD/ FBD Description
<17e> This function block implements an N-sample delay.
DELAY
. —EN—FENO—. . .
—RUN XOUT—.
—XIN
—N

Supported Properties: None

SM Version 1.4

136

14 Series

IEC 61131-3 Solutions

Table 10-8 Data types for the parameters

Parameter Data type | Description
RUN Bool 1 =run, 0 = reset
XIN Real Input variable

N Int 0<=N<12
XOuUT Real Delayed output

5. AVERAGE FB instruction

Table 10-9 AVERAGE FB instruction

LAD/ FBD Description
<777 This function block implements a running average over N samples.
AVERAGE
. —EN——ENO=—. . .
—RUN XOUT—.
—XIN
—N

Supported Properties: None

Table 10-10 Data types for the parameters

Parameter Data type | Description
RUN Bool 1 =run, O = reset
XIN Real Input variable
N Int 0<=N<12
XOuUT Real Averaged output
6. INTEGRAL FB instruction
Table 10-11 INTEGRAL FB instruction
LAD/ FBD Description
<T77> This function block implements integration over time.
INTEGRAL
. =—EN—ENO—. ..
— RUN aQ—.
—R1 XOUuT—.
—XIN
—X0
— C¥CLE

Supported Properties: None

Table 10-12 Data types for the parameters

Parameter Data type | Description
RUN Bool 1 = integrate, 0 = hold

SM Version 1.4 137 14 Series

IEC 61131-3 Solutions

R1 Bool Overriding reset
XIN Real Input variable
X0 Real Initial value
CYCLE Time Sampling period
Q Bool NOT R1
XOUT Real Integrated output
7. DERIVATIVE FB instruction
Table 10-13 DERIVATIVE FB instruction
LAD/ FBD Description
<777> This function block implements differentiation with respect to time.
DERIVATIVE
= EN—ENO—. . .
—RUN XOUT—.
—XIN
— CYCLE

Supported Properties: None

Table 10-14 Data types for the parameters

Parameter Data type | Description

RUN Bool 0 = reset

XIN Real Input to be differentiated
CYCLE Time Sampling period

XOUT Real Differentiated output

8.

Table 10-15 HYSTERESIS FB instruction

HYSTERESIS FB instruction

LAD/ FBD

Description

<7
HYSTERESIS
o o==EN——ENOD=—. . .

— XIN1 Q—.
— XIN2

—EPS

This function block implements Boolean hysteresis on the difference of
REAL inputs.

Supported Properties: None

Table 10-16 Data types for the parameters

Parameter Data type | Description

XIN1 Real Input 1

XIN2 Real Input 2

EPS Real Epsilon

Q Bool XIN1 > XIN2 + EPS =1, XIN1 - EPS < XIN2 =1

SM Version 1.4

138

14 Series

IEC 61131-3 Solutions

9. LIMITS_ALARM FB instruction

Table 10-17 LIMITS_ALARM FB instruction

LAD/ FBD Description
ST This function block implements a high/low limit alarm with hysteresis on
LIMITS_ALARM both outputs.
. —EN ENO—. . .
—H oH—-
—X a-—.
—L oL—.
—EPS

Supported Properties: None

Table 10-18 Data types for the parameters

Parameter Data type | Description

H Real High limit

X Real Variable value
L Real Lower limit
EPS Real Hysteresis
QH Bool High flag

Q Bool Alarm output
QL Bool Low flag

10. ANALOG_MONITOR FB instruction

Table 10-19 ANALOG_MONITOR FB instruction

LAD/ FBD

Description

. .—EN

<77

ANALOG_MONITOR
ENO—. . .

SE—.

ME =—.

ALRM —.

WARN —.

QH—.

This function block implements analog signal monitoring.

Supported Properties: None

Table 10-20 Data types for the parameters

Parameter Data type Description

X Real Variable value

L ANALOG_LIMITS | Analog monitoring parameters structure
SE Bool Signal error

ME Bool Measurement error

SM Version 1.4

139

14 Series

IEC 61131-3 Solutions

ALRM Bool Alarm
WARN Bool Warning
QH Bool 1 = Signal high

11. IEC_PID FB instruction

Table 10-21 IEC_PID FB instruction

LAD/ FBD Description
<777> This function block implements Proportional + Integral + Derivative
IEC_PID control action. The functionality is derived by functional composition of
. —EN—FENO—. . . previously declared function blocks.

— AUTO XOUT —.

—pv

—sp

—X0

—KpP

—TR

—TD

— CYCLE

Supported Properties: None

Table 10-22 Data types for the parameters

Parameter Data type | Description

AUTO Bool 0 - manual, 1 - automatic

PV Real Process variable

SP Real Set point

X0 Real Manual output adjustment typically from transfer station
KP Real Proportionality constant

TR Real Reset time

TD Real Derivative time constant

CYCLE Time Sampling period

XOUT Real Control signal

SM Version 1.4

140

14 Series

IEC 61131-3 Solutions

12.

Table 10-23 RAMP FB instruction

RAMP FB instruction

LAD/ FBD

Description

<777
RAMP
. —EN—ENO—. ..

=—RUN BUSY=—.
—X0 XOUT—.
— X1
— 1R

— CYCLE

This function block implements a time-based ramp.

Supported Properties: None

Table 10-24 Data types for the parameters

Parameter Data type Description
RUN Bool 0 - track X0, 1 - ramp to/track X1
X0 Real Start value
X1 Real Target value
TR Real Ramp duration
CYCLE Time Sampling period
BUSY Bool BUSY = 1 during ramping period
XOuUT Real Output value
13. TRANSFER FB instruction
Table 10-25 TRANSFER FB instruction
LAD/ FBD Description
<777 This function block implements a manual transfer station with bump less
TRANSFER transfer.
S o—EN ENO—. . .
—AUTO XOuT —.
—XIN
— FAST_RATE
— SLOW_RATE
— FAST_UP
— SLOW_UP
— FAST_DOWN
— SLOW_DOWN
— CYCLE

Supported Properties: None

SM Version 1.4

141

14 Series

IEC 61131-3 Solutions

Table 10-26 Data types for the parameters

Parameter Data type Description

AUTO Bool 1 - track X0, 0 - ramp or hold
XIN Real Typically, from PID Function Block
FAST_RATE Real Up ramp slopes
SLOW_RATE | Real Down ramp slopes
FAST_UP Bool Typically pushbuttons
SLOW_UP Bool

FAST_DOWN | Bool

SLOW_DOWN | Bool

CYCLE Time Sampling period

XOUT Real Output value

SM Version 1.4

142

14 Series

Monitor and Control Instructions

Monitor and Control
Instructions

This chapter will help you when selecting, configuring, and assigning parameters to a controller block for your
control task. It introduces you to the functions of the configuration tool and explains how you use it.

To understand this chapter, you should be familiar with automation and process control engineering concepts.

SM Version 1.4 143 14 Series

Monitor and Control Instructions

1. Designing Digital Controllers

1.1 Process Characteristics and Control

1.1.1 Process Characteristics and the Controller

The static behavior (gain) and the dynamic characteristics (time lag, dead time, reset times etc.) of the process to
be controlled have a significant influence on the type and time response of the signal processing in the controller
responsible for keeping the process stable or changing the process according to a selected time schedule.

The process has a special significance among the components of the control loop. Its characteristics are fixed
either by physical laws or by the machinery being used and can hardly be influenced. A good control result is
therefore only possible by selecting the controller type best suited to the particular process and by adapting the
controller to the time response of the process.

Precise knowledge of the type and characteristic data of the process to be controlled is indispensable for
structuring and designing the controller and for selecting the dimensions of its static (P mode) and dynamic (I and
D modes) parameters.

1.1.2 Process Analysis

To design the controller, you require exact data from the process that you obtain by means of a transfer function
following a step change in the setpoint. The (graphical) analysis of this (time) function allows you to draw
conclusions about the selection of the most suitable controller function and the dimensions of the controller
parameters to be set.

Before describing the use of the Configuration Standard PID Control tool the next sections briefly look at the most
common processes involved in automation. You may possibly require this information to help you to decide the
best procedure for the analysis and simulation of the process characteristics.
1.1.3 Type and Characteristics of the Process
The following processes will be analyzed in greater detail:

e Self-regulating process

e Self-regulating process with dead time

e Process with integral action

Self-regulating Process

Most processes are self-regulating, in other words, after a step change in the manipulated variable, the process
(controlled) variable approaches a new steady-state value. The time response of the system can therefore be
determined by plotting the curve of the process variable with respect to time PV(t) after a step change in the
manipulated variable MV by a value greater than 1.5% of its total range.

SM Version 1.4 144 14 Series

Monitor and Control Instructions

MV A
> t
py A _ DPV
= ——
D MV
The meaning of the parameters
is as follows:
Ks transfer coefficient
Tu time lag
Tg settling time

\J

Figure 11-1 Step Response of a Self-Regulating Process (first order)

If the process response within the manipulated variable range is linear, the transfer coefficient Ks indicates the

gain of the control loop. From the ratio of the time lag to the settling time Tu/Tg, the controllability of the process
can be estimated. The smaller this value is, in other words the smaller the time lag relative to the settling time,

the better the process can be controlled.

According to the values u and Ty, the time response of a process can be roughly classified as follows:
Tu< 0.2 min and Tg < 2 min — fast process
Tu> 0.5 min and Tg > 5 min — slow process

The absolute value of the settling time therefore has a direct influence on the sampling time of the controller: The
higher Ty is, in other words the slower the process reaction, the higher the sampling time that can be selected.

Self-Regulating Process with Dead Time

Many processes involving transportation of materials or energy (pipes, conveyor belts etc.) have a time response
similar to that shown in previous figure. This includes a start-up time Ta made up of the actual dead time and the
time lag of the self-regulating process. In terms of controllability of the process it is extremely important that Tt
remains small relative to Tg4 or in other words that the relationship TvTg < 1 is maintained.

SM Version 1.4 145 14 Series

Monitor and Control Instructions

MV A
A
D MV
> 1
The meaning of the parameter
PV A is as follows:
Tt dead time
Tu time lag
Ta start up time (= Tt +Tu)
Tg settling time
> 1

Figure 11-2 Step Response of a Self-Regulating Process with Dead Time (T-PT Process)

Since the controller does not receive any signal change from the transmitter during the dead time, its
interventions are obviously delayed and the control quality is therefore reduced. When using a standard
controller, such effects can be partly eliminated by choosing a new location for the measuring sensor.

Process with Integral Action

Here, the slope of the ramp of the process variable (PV) after changing the manipulated variable by a fixed
amount is inversely proportional to the value of the integration time constant (reset time) TI.

MV A
D MV
-t
DPV
D MV
Steady-state condition
14+ — The meaning of the
| parameters is as follows:
\ Tl reset time
\
al -

Figure 11-3 Step Response of a Non Self-Regulating Process (I Process)

Processes with an | component are, for example liquid level processes in which the level can be raised or
lowered at different rates depending on the opening of the final control element. Important processes involving
the | action are also the commonly used motor drives with which the rate of change of a traversing movement is
directly proportional to the speed of the drive.

If no disturbance variables occur before the | element of a process with integral action (which is usually the case),
a controller without | action should be used. The effects of a disturbance variable at the process input can usually
be eliminated by feedforward control without using an | action in the controller.

SM Version 1.4 146 14 Series

Monitor and Control Instructions

1.2 Feedforward Control

Disturbance variables affecting the process must be compensated by the controller. Constant disturbance
variables are compensated by controllers with an | action. The control quality is not affected.

Dynamic disturbance variables, on the other hand, have a much greater influence on the quality of the control.
Depending on the point at which the disturbance affects the control loop and the time constants of sections of the
loop after the disturbance, error signals of differing size and duration occur that can only be eliminated by the |
action in the controller.

This effect can be avoided in situations where the disturbance variable "measuring” can be measured. By feeding
the measured disturbance variable forward to the output of the controller, the disturbance variable can be
compensated and the controller reacts much faster to the disturbance variable.

Disturbance variable
DISV

— Measurement

Controller i — Rest of loop
PV

PT

\j

| 4

Programmable Logic Controller Process/plant

Figure 11-4 Compensating a Disturbance Affecting Process Input (Signal Names of the Standard PID Control)

1.3 Multi-Loop Controls

1.3.1 Processes with Inter-dependent Process Variables

The Standard Controller product contains prepared examples with which you can implement multi-loop controls
quickly and easily. Using such control structures always has advantages when dealing with processes that have
interdependent process variables.

The next sections describe the design of these controller structures and how they can be used.

Multi-loop Ratio Controls

Whenever the relationship between two or more process variables in a process is more important than keeping
its absolute values constant, ratio control is necessary.

SM Version 1.4 147 14 Series

Monitor and Control

Instructions

SP1 —»O—

PV 1

FAC

|

PID MV Process 1
Controller » (e.g. amount of air)
1
SP 2 PID MV Process 2
(O Controller > (e.g. amount of fuel)
2
PV 2 !

Programmable Logic Controller

Process/plant

Figure 11-5 Ratio Control with Two Loops

\J

Generally, the process variables that must be maintained in a preset ratio involve flow rates or volumes as found
in combustion processes. In above figure, the amount of fuel in control loop 2 is controlled in a ratio selected with
FAC to the amount of air set at SP1.

Blending Control

In a blending process, both the total amount of materials to be mixed and the ratio of the components making up
the total product must be kept constant.

Based on the principle of ratio control, these requirements result in a control structure in which the amount of
each component of the mixture must be controlled. The setpoints of the components are influenced by the fixed
proportion or ratio factors (FAC) and by the manipulated variable of the controller responsible for the total amount

(Following figure).

SM Version 1.4

148

14 Series

Monitor and Control Instructions

SPGM Controller MV
PVGM i Al
SP1 Controller MV 1 Process
1 (O 1 > 1
FAC1 PV1
SP2 Controller MV 2 Process Y
Sk > t
FAC2 PV2
SP3 Controller MV 3 | Process) 4
X (O 3 - 3 (1)
FAC3 PV3
Programmable Logic Controller Process/plant

Figure 11-6 Blending control for three components

The controller structure for the blending control contains a controller with a continuous output for controlling the
total amount ALL and three controllers for the secondary control loops of the individual components 1 to 3, that
make up the total amount according to the factors FAC1 to FAC3 (addition).

Cascade Control

If a process includes not only the actual process variable to be controlled but also a secondary process variable
that can be controlled separately, it is usually possible to obtain better control results than with a single loop
control.

The secondary process variable PV2 is controlled in a secondary control loop. This means that disturbances from
this part of the system are compensated before they can affect the quality of the primary process variable PV1.
Due to the structure, inner disturbance variables are compensated more quickly since they do not occur in the
entire control loop. The setting of the primary controller can then be made more sensitive allowing faster and
more precise control with the fixed setpoint SP.

SM Version 1.4 149 14 Series

Monitor and Control Instructions

Primary

SP1

PV1

Controller

Secondary loop (follow-on control)

|

MV 2

;'

2

r| Part 1

-

Process |

I‘“_W Part 2

]

controller
Controller | | MV 1
1
V2
|
|
|
L

| Process

L
|

-

Programmable Logic Controller

Figure 11-7 Two-Loop Cascade Control System

Process/plant

The controller structure for cascade control contains a controller with a continuous output for controlling the
reference input (setpoint) of the secondary loop and a step controller to control the secondary process variable
PV2 (secondary controller).

14

Structure and Mode of Operation of the PID Control

The controllers that can be implemented with the Standard PID Control are always digital sampling controllers

(DDC=direct digital control). Sampling controllers are time-controlled, in other words they are always processed
at equidistant intervals (the sampling time or CYCLE). The sampling time or frequency at which the controller is
processed can be selected.

The following figure illustrates a simple control loop with the standard controller. This diagram shows you the
names of the most important variables and the abbreviations of the parameters as used in this manual.

Setpoint
Process Actuator =
Disturbance
variable)
Process Manipulated
variable Variable
SP y vy PV y MV
r—O-——O————— y————————
| Y
I Y Controller Manipulated
’\,\D ™ algorithm value
| y \ algorithm
| / \
I Comparator Error signal (ER) Manual value (MAN)
L

O = Interfaces to process

Function block: PID_STD
sampling time: CYCLE

Figure 11-8 Sampling Controller of the Standard PID Control in the Closed Loop

The control functions implemented in the function block PID_STD is pure software controllers. The input and
output values of the controllers are processed using digital algorithms on a CPU.

SM Version 1.4

150

14 Series

Monitor and Control Instructions

Since the processing of the controller blocks in the processor of the CPU is serial, input values can only be
acquired at discrete times and the output values can only be output at defined times. This is the main
characteristic of sampling control.

1.4.1 Control Algorithm and Conventional Control

The control algorithm on the processor simulates the controller under real-time conditions. Between the sampling
instants, the controller does not react to changes in the process variable PV and the manipulated variable MV
remains unchanged.

Assuming, however, that the sampling intervals are short enough so that the series of sampling values
realistically approximates the continuous changes in the measured variable, a digital controller can be considered
as quasi continuous. With the Standard PID Control, the usual methods for determining the structure and setting
characteristic values can be used just as with continuous controllers.

This requirement for creating and scaling controllers with the Standard PID Control package is met when the
sampling time (CYCLE) is less than 20% of the time constant of the entire loop.

If this condition is met, the functions of the Standard PID Control can be described in the same way as those of
conventional controllers. The same range of functions and the same possibilities for monitoring control loop
variables and for tuning the controller are available.

1.4.2 The Functions of the “Standard PID Control”

The following diagrams illustrate the preconfigured controller structures of the Standard PID Control as block
diagrams. The following figure represents the continuous controller with the signal processing branches for the
process variable and setpoint, the controller and the manipulated variable branch. You can see which functions
must be implemented after the signal conditioning at the input and which are not required.

The range of functions of the "Standard PID Control” is rigid, but can be extended by a user-defined function (FC)
in each of the signal processing branches.

SM Version 1.4 151 14 Series

Monitor and Control Instructions

Internal process Process variable Setpoint input External setpoint
variable from I/i)jf T
Setpoint Setpoint
Process variable generator normalization
normalization
—»
Time lag Ramp soak
N -
Square root | User function |
i FC
extraction L (_ l]
r—— -y _
| User function | Rate of change
FC limits
L5904
Process variable Setpoint limits
monitoring
PV SP
Process variable rate -\
of change monitoring ER
Dead band
Manual input
Error signal -
monitoring |]
PID Controller Manual value
generator
\
r——— | -
| User function |
FC
L__f9_ 4
y
Rate of change
limits
Manipulated
value limits
y
Manipulated value
Pulse generator normalization Format
conversion
_ L _1
Pulse outputs Manipulated value output [%0] Peripheral output

Figure 11-9 equence of Functions of the Standard PID Control (continuous controller)

SM Version 1.4 152 14 Series

Monitor and Control Instructions

15 Signal Processing in the Setpoint Branch

e Fixed setting of the setpoint value (SP_GEN)
With fixed setpoint controllers, the setpoint is selected using a switch at the setpoint generator SP_GEN
and is then fixed.

e Setpoint setting according to a time-controlled program (RMP_GEN)
When controlling processes with different setpoints set according to a time-controlled program, the ramp
soak function generates the required curve for the reference input and influences the process so that the
process variable changes according to a defined profile.

e Change limitation for the reference input(ROC_GEN)
The conversion of setpoint step changes to a ramp-shaped increase or decrease in the reference input
prevents large input changes to the process. The ROC_GEN function limits the setpoint rate of change
separately for the up rate and down rate and for positive and negative values in the reference input.

e Absolute value limitation for the reference input (LIMIT)
To prevent illegal process states occurring, the setpoint is limited by high and low limits (LIMIT).

e Delay of the process variable (LAG1_GEN)
To reduce the effects of noise on process signals, a first order time lag is used in the process variable
branch. This function dampens the analog process variable more or less depending on the time
constant TMLAG. Disturbance signals are therefore effectively suppressed. Overall, however, the time
constant of the total control loop is increased, in other words, the control action becomes slower.

e Extracting the root of the process variable (SQRT_NORM)
When the relationship of the measured signal to the physical value is quadratic (flow measurement
using a differential flow meter) the process variable must be linearized by extracting the root (square
root algorithm). Only a linear value can be compared to the linear setpoint for the flow and processed in
the control algorithm. For this reason, the SQRT_NORM function element can be included in the
process value branch as an option.

e Monitoring the Process Variable Rate of Change (CHG_ALM)
If the rate of change of the process variable is extremely high or too high, this points to a dangerous
process state to which the programmable logic controller may have to react. For this reason, the
CHG_ALM function generates alarm signals if selectable rates of change (positive or negative) are
detected in the process variable. The alarm signals can then be further processed to suit the particular
situation.

e Monitoring the Absolute Value of the Process Variable and Error Signal (LIM_ALM)
The limit values are set for the process variable and the error signal are monitored by the LIM_ALM
function.

e Superimposing by Signal Noise (DEADBAND)
To filter out noise on the channels of the process variable or the external reference input, the error
signal passes through a selectable dead band component. Depending on the amplitude of the noise, the
dead band width can
be selected for the signal transmission. Falsification of the transmitted signal must, however be
accepted as a side effect of the selected dead band.

1.6 Signal Processing in the PID Controller

e Fixed Setting of the Manual Value (MAN_GEN)
In the manual mode (open loop), the manipulated value is selected at the manual value generator
MAN_GEN using a switch and is fixed.

e Change Limitation of the Manipulated Variable (ROC_GEN)
Converting extremely fast step changes in the manipulated variable into a ramp-shaped rise or fall in the
manipulated variable prevents sudden changes in the input to the process. The function (ROC_GEN)
limits the manipulated value rate of change both up and down.

e Absolute value limitation for the Manipulated Variable (LIMIT)
To avoid illegal process states or to restrict the movement of an actuator, the upper and lower limits of
the range of the manipulated variable are set with LIMIT.

e Forming the Binary Actuating Signal (THREE_STP_GEN)
Depending on the sign of the error signal, the three-step switch THREE_ STP_GEN generates a
positive or negative output pulse via the pulse shaping stage.

SM Version 1.4 153 14 Series

Monitor and Control Instructions

2. Configuring and Starting the Standard PID Control

2.1 Defining the Control Task

Before you implement a control loop using the Standard PID Control package, you must first clarify the technical
aspects of the process you want to automate, the programmable logic controller you will be using and the
operating and monitoring environment. To specify the task in detail, you therefore require the following
information:

1- You need to know the process you want to control, in other words the characteristic data of the process
(gain, equivalent time constant, disturbance variables etc.).

2- You must choose the CPU on which you want to install the Standard PID Control.

3- You must define the signal processing and monitoring functions along with the basic functions of the
controller.

Since the Standard PID Control package creates software controllers based on the standard function blocks (for
example PID_STD) from the range of Intelart Studio control blocks, you should be familiar with handling those
blocks and with the structure of I4PLCs user programs.

Although the functions of the implemented controller are defined solely by assigning parameters, the connection
of the controller block to the process I/0Os and its integration in the call system of the CPU requires knowledge
that cannot be dealt with within the scope of this manual.

You require the following information:
1- Working with I4PLCs
2- The basics of programming with Intelart Studio
3- Data about the programmable logic controller you are using

There are almost no restrictions in terms of the type and complexity of the processes that can be controlled with
the Standard PID Control. Providing the system is a single input-single output system without a derivative transfer
action and without all-pass components, all process types whether self-regulating processes or not, in other
words without or with | components can be controlled (following figure).

SM Version 1.4 154 14 Series

Monitor and Control Instructions

r 7777777777777777777777 W
P-Te process | MV PV }
(TeE=T1+T1+.) ‘ |
\
{ P-T1 P-T1 P-T1 |
r 777777777777777 B
\
I-Te process | L ﬂ, ‘
(Te=T1+.) \ ‘
|
T P-T \
L o T
r- " - W — — W — — W W Y "
| |
P-T:Teprocess | MV i r r | PV |
(TeE=To+T2+.) | |
‘1 P-T1 P-T2 P-T2 |
r 777777777777777 B
\
P-Ts-Te process | L W ﬂ, |
(Te=T1+.) | o |
S T S

Figure 11-10 Types of Process that can be Controlled with Standard PID Control

The process variable (PV) to be processed by the Standard PID Control is always an analog physical variable
(voltage, current, resistance etc.) that is digitized by an expansion analog input module and converted to the
uniform Real 1/O signal.

The values of these signals are saved in memory cells or areas of the CPU user memory. These areas can be
addressed using absolute addresses or using symbolic addresses after making the appropriate entries in the
symbol table of the CPU.

2.2 Type of Actuator

To select a suitable configuration for the Standard PID Control, the type of actuator used to influence the process
variable is important. The type of signal required by the actuator determines the way in which signals are output
in the manipulated variable branch (continuous or discontinuous).

In the great majority of cases, some form of valve will be used to adjust material or energy flow. Different
actuating signals are required depending on the drives used to adjust these valves.

1- Proportional actuators with a continuous actuating signal.
The opening of an orifice, the angle of rotation or a position is adopted proportional to the value of the
manipulated variable, in other words within the actuating range, the manipulated variable operates in an
analog manner on the process. The actuators in this group include pneumatic diaphragm actuators and
electro-mechanical actuators with position feedback signals with which a positioning control loop can be
created.

2- Proportional actuators with a pulse-width modulated signal.
With these actuators, a pulse signal is output with a length proportional to the value of the manipulated
variable at the sampling time intervals. This means that the actuator (for example a heating resistor or
heat exchanger) is switched on for a length of time depending on the manipulated variable. The
actuating signal can be either monopolar representing the states on or off or bipolar, representing for
example the values open/close, forwards/backwards, accelerate/decelerate.

3- Actuators with an integral action and three-step actuating signal.
Actuators are often driven by motors in which the duration of the “on” time is proportional to the travel of
the valve plug. Despite different designs, these actuators all share the same characteristic in that they
correspond to an integral action at the input to the process. The Standard PID Control with a step output

SM Version 1.4 155 14 Series

Monitor and Control Instructions

provides the most economical solution to designing control loops including actuators with an integral
action.

Q TIP

The manipulated variables are represented as digital numerical values in the floating point or peripheral (I/O)
format or as binary signal states. Depending on the actuator being used, expansion modules must always be
connected to the output to convert the signals to the required type and to provide the required actuating
energy.

2.3 Generating the Control Project Configuration

Now that you have worked through the required control and monitoring, this section now shows you the step-by-
step implementation of these functions. We recommend that you create your configuration following the steps
outlined below (checklist):

1- Select the controller blocks or block configuration required for your controller structure. Select and copy
a configuration example closest to the configuration you want to implement.

2- Configure the required controller by including or omitting preconfigured functions or by including your
own.

3- Select the sampling time and calls of the control loop:

Specify the startup response with Startup OB

e Decide on the sampling time and priority class, if necessary, change the call interval of the
periodic interrupt OB

e Configure the loop scheduler to suit the number of loops on the CPU

4- Assign parameters and use the conversion functions for the measuring range and zero point adaptation
of the input/output signals:

¢ Normalization of the external setpoint
e Normalization of the external process variable
e Manipulated value denormalization
5- Configure the setpoint branch:
e Setpoint generator
¢ Ramp soak
e Limits of the setpoint rate of change
e Limits of the absolute values of the setpoint
6- Configure the process variable branch:
e Process variable time lag
e Square root extraction
e Monitor the absolute values of the process variable
¢ Monitoring the rate of change of the process variable
7- Configure error signal generation:
e Dead band of the error signal
e Monitoring the error signal for absolute values
8- Configure the manipulated value branch for continuous controllers:
e Manual value generator
e Limits of the rate of change of the manipulated value
e Limits of the absolute values of the manipulated value
9- Configure controller:

e PID controller structure and PID parameters

SM Version 1.4 156 14 Series

Monitor and Control Instructions

e Operating point for P and PD controllers
e Feedforward control

10- If necessary, include extra functions in the form of a user FC in the setpoint, process variable and/or
manipulated value branch.

11- Interconnect the block inputs and outputs of the configured standard controller with the process I/Os:

e Program the connections of the inputs/outputs with the absolute or symbolic /0 addresses in
the user memory of the CPU.

2.4 The Sampling Time CYCLE

241 The Sampling Time: CYCLE

The sampling time is the basic characteristic for the dynamic response of the Standard PID Control. This decides
whether or not the controller reacts quickly enough to process changes and whether the controller can maintain
control in all circumstances. The sampling time also determines the limits for the time-related parameters of the
Standard PID Control.

Selecting the sampling time is a compromise between several, often contradictory requirements. Here, it is only
possible to specify a general guideline.

e The time required for the CPU to process the control program, in other words to run the
function block, represents the lowest limit of the sampling time.

e The tolerable upper limit for the sampling time is generally specified by the process dynamics.
The process dynamics is, in turn, characterized by the type and the characteristics of the
process.

24.2 Equivalent System Time Constant

The most important influence on the dynamics of the control loop is the equivalent system time constant (Te) that
can be determined after entering a step change MV by recording the unit step response at the system input.

The system value Te represents a useful approximation of the effective time lag caused by several P-T1, P-Ts
and Tt elements in the loop. If, for example the same PT 1-elements are connected in series, it is the sum of the
single time constants.

The meaning of the parameters is

PV as follows:

Te Equivalent system time constant
Ta Start-up time (Tt + Tu)
Tg Settling time

—— Te —

Figure 11-11 Determining the Equivalent System Time Constant Te

243 Sampling Time Estimate

If a minimum speed is required for the control, you can specify a maximum sampling time CYCLEmax.
With P-Te processes in which the first delay element is predominant and T1 = 0.5 Te make sure that:
CYCLEmax <0.1*Te

For all other P-Te-processes:

CYCLEmax < 0.2 * Te is adequate

SM Version 1.4 157 14 Series

Monitor and Control Instructions

244 Rule of Thumb for Selecting the Sampling time

Experience has shown that a sampling time of approximately 1/10 of the time constant Tec determining the step
response of the closed loop produces results comparable with the conventional analog controller.

The total time constant of the closed loops is obtained in a way similar to that shown in Figure 11-11, by entering
a setpoint step change and evaluating the settling of the process variable.

1
CYCLE = —Tec
10

2.5 How the Standard PID Control is Called

Depending on the sampling time of the specific controller, the controller block must be called more or less often
but always at the same time intervals. The operating system of the 14PLC calls the periodic interrupt organization
block at the specified intervals.

If you require several controllers or controllers with large sampling times, you should use the loop scheduler
mechanism (LP_SCHED).

2.6 Range of Values and Signhal Adaptation (Normalization)

26.1 Internal Numerical Representation

When the algorithms in the function blocks of the Standard PID Control are processed, the processor works with
numbers in the floating point format (REAL).
The floating point numbers have the single format complying with ANSI/IEEE standard 754-1985:

Format: DD (32 hits)

Range of values: —-3.37*10% .. -8.43* 10 and
8.43*10%7 ...3.37 * 1038

This range is the total range of values for parameters in the REAL format. To avoid limits being exceeded during
processing, the input signal SP which is an analog physical value is defined as a technical range of values:

Techn. Range of values: —10° ... +10°

2.6.2 Signal Adaptation

The normalization function at the input for the external setpoint allows any characteristic curve of transmitters or
sensors to be adapted to the physical range of values of the Standard PID Control.

3. Signal Processing in the Setpoint/Process Variable Channels and PID
Controller Functions

3.1 Average Value Generator (AVG_GEN)

Table 11-1 AVG_GEN instruction

LAD/ FBD Description
e Moving average by an external buffer and selectable averaging samples
AVG_GEN count.
. .—EN—ENO—. . .
—RUN OUT

1NV

MN_N

BUF

Supported Properties: None

SM Version 1.4 158 14 Series

Monitor and Control Instructions

Table 11-2 Data types for the parameters

Parameter Data type Description

RUN Bool Run mode.
e False = Fills the buffer with INV value and outs the INV on OUT
e True = Running moving average

INV Real Input variable

MN_N Int Number of mean (average) elements

BUF Real[*] Ring buffer

ouT Real Average output

3.2 Rate of Change Alarm

Table 11-3 CHG_ALM instruction

Generator (CHG_ALM)

Description

LAD/ FBD
<777
CHG_ALM
. .—EN ENO—. ..
—RUN ouTt

1MV QURLMP =—
URLM_P QDRLMP —
DRLM_P QURLMN =
URLM_N QDRLMN =—
DRLM_N

MN_MN

Supported Properties: None

Application

The CHG_ALM function monitors limits for the rate of change of any
process variable.

The numerical values for the rate of change limits are set at the input
parameters for “up rate” and “down rate” in the positive and negative
ranges of the process variable. The rate of change is an up or down rate
as a percentage per second.

If the rate of change of the process variable exceeds these limits, the
output signal bits QURLMP to QDRLMN are set.

If the rate of change in a process variable is too fast (for example motor speed, pressure, level, temperature etc.),
illegal or dangerous situations can occur in the process or plant. Here, the CHG_ALM function is used to make
sure that the process variable does not exceed or fall below a permitted range of change or slope. Limit violations
are detected and signaled to allow a suitable reaction.

SM Version 1.4

159 14 Series

Monitor and Control Instructions

INV A

QURLMP

QDRLMP

QURLMN

QDRLMN

Table 11-4 Data types for the parameters

DRLM_N URLM_N

1

|
|
|
[
|
!
|
{

A

Figure 11-12 Monitoring the Rate of Change (Slope) of a Process Variable INV(t)

Parameter Data type Description

RUN Bool Run mode

INV Real Input variable

URLM_P Real INV rise limit in the positive range. INV > 0 and |INV] rising
DRLM_P Real INV fall limit in the positive range. INV > 0 and |INV| falling
URLM_N Real INV rise limit in the neg. range. INV < 0 and [INV] rising
DRLM_N Real INV fall limit in the neg. range. INV < 0 and [INV]| falling
MN_N Int Number of mean (average) elements. 0 < MN_N <=8
ouT Real Current change value

QURLMP Bool Rise limit in the positive range alarm

QDRLMP Bool Fall limit in the positive range alarm

QURLMN Bool Rise limit in the negative range alarm

QDRLMN Bool Fall limit in the negative range alarm

3.3 Cycle Time Calculator

Table 11-5 CYC_TM
LAD/ FBD

instruction

(CYC_TM)

Description

=777
CYC_TM
co—EN—ENO—. ..

=—RUN

ouT

Supported Properties: None

Calculates the elapsed time of its last execution.

SM Version 1.4

160

14 Series

Monitor and Control Instructions

Table 11-6 Data types for the parameters

Parameter Data type Description
RUN Bool Run mode
ouT Time Calculated cycle time

3.4 Filtering Signal Function (DEADBAND)

Table 11-7 DEADBAND instruction

LAD/ FBD Description
The DEADBAND function is a selectable band in which small fluctuations
in the input variable around a specified zero point are suppressed.
<F7E> Outside this band, the error signal OUT rises or falls in proportion to the
DEADBAND input value. You can specify the width of the DEADBAND using the
o mEN————ENO—. .. parameter DEADB_W. The DEADBAND width can only have positive
values.
s out
If the input variable is within the DEADBAND, the value 0 is output (error
PV QDEADE — signal = 0). The output only rises or falls by the same values as the input
variable inv only when the input variable leaves this DEADBAND. This
DEADE_ W also falsifies the transferred signal when it is outside the DEADBAND.
This is, however, an acceptable compromise to avoid step changes at
— FALS_DB the limits of the DEADBAND. The amount to which the signal is falsified

Supported Properties: None

Application

corresponds to the value DEADB_W and can therefore be checked
easily.

If the process variable or the setpoint is affected by higher frequency noise and the controller is optimally set, the
noise will also affect the controller output. This can, for example, lead to large fluctuations in the manipulated
value at high control again when the D action is activated. This function reduces noise in the error signal of the
controller in the settled state and thus reduces unwanted oscillation of the controller output.

The DEADBAND operates according to the following functions:
Modified PV = SP - PV + DEADB_W where SP - PV < -DEADB_W
Modified PV = 0 where -DEADB_W < SP - PV < +DEADB_W
Modified PV = SP - PV + DEADB_W where SP - PV > +DEADB_W

Modified PV (OUT)

SP- PV
W >

-

DEADB_W

Figure 11-13 Filtering Noise Affecting the Error Signal (SP — PV) using a DEADBAND

Table 11-8 Data types for the parameters

Parameter Data type Description
SP Real Setpoint
PV Real Process variable

DEADB_W Real

Dead band width. DEADB_W >=0

SM Version 1.4

161 14 Series

Monitor and Control Instructions

FALS DB Bool Falsify error outside dead band. False = Disabled, True = Enabled
ouT Real Modified PV
QDEADB Bool Control error is within dead band

3.5 Unsigned Int to Signed Int Encoder (ENCODER)

Table 11-9 ENCODER instruction

LAD/ FBD Description
L Converts a 16-bit unsigned counter value to 32-bit unsigned value.
ENCODER
. .—EN—ENO—. . .
—INV OUT—

Supported Properties: None

Table 11-10 Data types for the parameters

Parameter Data type Description
INV UDInt Input value from 16-bit encoder
ouT Dint 32-bit encoder value

3.6 First In First Out (FIFO)

Table 11-11 FIFO instruction

LAD/ FBD Description
St The full form of FIFO is First In, First Out. FIFO is a method of
FIFO organizing, handling, and manipulating the data structure of elements in
T EN ENO = .. a computing system. It's a type of data handling which prioritizes the
processes that come first- meaning, it will first remove or append those
" ERIGN— elements that came first.
— QUEUE OFLO—
— PEEK
—R1
—IN
—jouT
— BUFFER

Supported Properties: None

Table 11-12 Data types for the parameters

Parameter Data type Description

N Int Maximum depth after reset
QUEUE Bool Basic queue operations
PEEK Bool Basic queue operations
R1 Bool Over-riding reset

IN Variant Input to be queued

SM Version 1.4

162

14 Series

Monitor and Control Instructions

ouT Variant First element data
BUFFER Variant[*] External array
EMPTY Bool Stack empty
OFLO Bool Stack overflow

3.7 Asymmetric Hysteresis Generator (HYST_GEN)

Table 11-13 HYST_GEN instruction

LAD/ FBD Description
<P The Asym hysteresis function block provides an asymmetric hysteresis
HYST_GEN boolean output driven by the difference of two floating point (REAL)
. =—EN—ENO—. . . inputs XIN1 and XIN2.
XIN1 Q—
XIN2
EPS_H
EPSL

Supported Properties: None

Table 11-14 Data types for the parameters

Parameter Data type Description

XIN1 Real Input 1

XIN2 Real Input 2

EPS_H Real High epsilon

EPS_L Real Low epsilon

Q Bool XIN1 > XIN2 + EPS_H =1, XIN1 -EPS_L < XIN2=1

3.8 Damping the Process Variable (LAG1_GEN)

Table 11-15 LAG1_GEN instruction

LAD/ FBD Description
St By incorporating a time delay, higher frequency fluctuations in the
LAGT GEN process variable signal can be damped so that they are excluded from
co BN/ ENO—. .. the processing in the control algorithm in particular to avoid affecting the
derivative action. The amount of signal damping is determined by the
INV outr time constant TMLAG. The damping effect is achieved by a first order
time lag algorithm.
TMLAG
DF_OUT
— DF_OUT_ON
—RST_ON
CVCLE

Supported Properties: None

SM Version 1.4 163 14 Series

Monitor and Control Instructions

Application

The LAG1_GEN function is used as a delay element for the process variable. This can be used to suppress

disturbances.

By incorporating a time delay, higher frequency fluctuations in the process variable signal can be damped so that
they are excluded from the processing in the control algorithm in particular to avoid affecting the derivative action.

The amount of signal damping is determined by the time constant TMLAG.
The damping effect is achieved by a first order time lag algorithm.
The transfer function in the Laplace transform is as follows:

outv(s) - 1
MP4(s) (1 + TMLAG *s)

where s = Laplace variable

The step response in the time domain is as follows:
outv(t) = MP4(0) (1 — ePV_TMLAG)

Legend:
MP4(0) the size of the process variable jump at the input
outv(t) the output value
TMLAG the delay time constant
t time
A
Outv
MP4
MP4(0
() 3
< N
| outv(t) | < 1% Deviation from
| ‘ steady-state value
| |
| |
TMLAG 5* TMLAG

Figure 11-14 Time lag smoothing diagram

Conditions for Parameter Assignment
If TMLAG <0.5 * CYCLE, there is no lag in effect.

A sampling time (CYCLE) of less than a fifth of the time lag is necessary to achieve a time lag approaching the

analog response.

Table 11-16 Data types for the parameters

Parameter Data type Description

INV Real Input variable

TMLAG Time Input variable time lag
DF_OUT Real Default output variable
DF_OUT_ON | Bool Output default value on
RST_ON Bool Restart

CYCLE Time Sample time

ouT Real Output variable

SM Version 1.4 164

14 Series

Monitor and Control Instructions

3.9 Monitoring a Process Variable Limits (LIM_ALM)

Table 11-17 LIM_ALM instruction

LAD/ FBD Description
< The LIM_ALM function monitors four selectable limits in two tolerance
LIM_ALM bands for a process variable INV(t). If the limits are reached or
« o —EN———ENO—. .. exceeded, the function signals a warning at the first limit and an alarm at

the second limit.

i QA The numerical values of the limits are set in the input parameters for
H_ALM QH_WRN — “Warning” and
“Alarm”. If the process variable (INV) exceeds or falls below these limits,
H_WRN QL WRN — the corresponding output bits QH_ALM, QH_WRN, QL_WRN and
QL_ALM are set.
LALM QLALM = To prevent the signal bits “flickering” due to slight changes in the input
L WRN value or due to rounding errors, a hysteresis HYS is set. The hysteresis
- must pass the process variable before the messages are reset.
HYS

Supported Properties: None

Application

lllegal or dangerous states can occur in a system if process values (for example motor speed, pressure, level,
temperature etc.) exceed or fall below critical values. In such situations, the LIM_ALM function is used to monitor
the permitted operating range. Limit violations are detected and signaled to allow a suitable reaction.

INV(t
INV A ® HYS
HAM / “““ \ “““ R R - -
HWRN — 2 | - } _______________ —
\ ? Tolerance band

Tolerance band

_____ : L S

LLWRN |- -F--

L_ALM +—

QH_ALM —l—l_
QH_WRN —1

\
\
\
\
\
\
\
\
|
QL_WRN |
QL_ALM |_|—

Figure 11-15 A Process Variable INV — Monitoring the Limit Values

Table 11-18 Data types for the parameters

Parameter Data type Description

INV Real Input variable

H_ALM Real Upper INV limit ‘alarm’
H_WRN Real Upper INV limit 'warning’

SM Version 1.4 165 14 Series

Monitor and Control Instructions

L_ALM Real Lower INV limit "alarm’
L_WRN Real Lower INV limit ‘'warning’
HYS Real INV hysteresis

QH_ALM Bool High limit alarm
QH_WRN Bool High limit warning
QL_WRN Bool Low limit warning
QL_ALM Bool Low limit alarm

3.10 Loop Scheduler (LP_SCHED)

Table 11-19 LP_SCHED instruction

LAD/ FBD Description
<177 The "LP_SCHED” function reads the parameters specified by you
LP_SCHED calculates the variables required to schedule the loops.
. =EN—ENO=—. . .
You should call the "LP_SCHED” FC in a periodic interrupt OB.
—RUN OUT Afterwards you must program a conditional call for all the corresponding

control loops in the same OB. The condition for calling the individual

T™_B control loops is determined by the "SCHED” Bool array. During operation
you can disable the call of individual control loops manually and

SCHED furthermore reset individual control loops.

Supported Properties: None

Table 11-20 Data types for the parameters

Parameter Data type Description

RUN Bool Input value from 16-bit encoder

TM_B Time Time base

SCHED Bool[*] Schedule bool array

ouT Int Current schedule index
Application

The loop scheduler LP_SCHED is used when the number of periodic-interrupts of a CPU is not enough to realize
the desired (various) sampling times. It allows any size of control loops to be called with sampling times which
amount to time base (TM_B) of the OB cycles.

Call of the ”LP_SCHED” FB in your Program
The "LP_SCHED” FB must be called before all control loop FBs.
Observe the following points when assigning values to the input parameter.

e RUN: When True, the scheduler will be run. When False, the scheduler is disabled and all SCHED bits
are in reset mode

e TM_B: At this point enter the interval time of the schedule to be executed.

e SCHED: A Bool array in size of your control loops which you must assign to the FB in order to update its
status by the scheduler

e OUT: Current schedule index in run mode. -1 when scheduler is disabled

When you call the control loop FBs you have to interconnect their input parameters EN and CYCLE with the
variables SCHEDI[x] and TM_B of the FB. SCHED [x] contains the trigger Boolean value only for one cycle
and is written by the "LP_SCHED” FB at every run.

The following section gives an example for calling the "LP_SCHED” FB and for the conditional call of three
functions.

Q TP

We recommend you to run LP_SCHED in a periodic interrupt OB instead of a cyclic program OB. When you
run the LP_SCHED in a periodic interrupt you must set the interval of the OB to be a chunk of the TM_B

SM Version 1.4 166 14 Series

Monitor and Control Instructions

parameter of the LP_SCHED FB. For example, if you want to execute 4 functions in every 200ms intervals in a
periodic interrupt, then you must set the Interval property of the OB to a rounded number such as 200ms/4 =
50ms or another less coefficient number.
In cyclic program OB there is no periodic interval and no guarantee to run schedules on a precise time base.
NOTICE
If you set a wrong TM_B value for the LP_SCHED FB, an arranged executions order may be occur.
SHE e 3 oE » ¥ 2
3 Name DataType DefaultValue Comment
1 * Input
2 | InitialCall Bool =True, if this is the first call
3 * Static
il B » Schedules Bool[3]
5 B b Schinstance LP_SCHED
6 | - RunSchd Bool False
7 B Function_0 ControlFunction
[B Function_1 ControlFunction
g | Function_2 ControlFunction
10 g <Add New ltem>
11 ~ Constant
Y - A 11w
HF 44 HdpE ANE H3E| A R A HSE ARE| /= -P= | [-N- | —
¥ Network[0]: Metwork
Comment :
#5chlnstance
LP_SCHED
EN ENO 4
#RunSchd — RUN ouT— 0
T#200ms—TM_B
#5chedules— SCHED
#Function_0
#5chadules[0] ControlFunction
| | EN ENO 4
#Function_1
#5chedules[1] ControlFunction
| | EN ENO 1
#Function_2
#5chedules[2] ControlFunction
| | EN ENO 1
Figure 11-16 Example of LP_SCHED for 3 scheduled functions
SM Version 1.4 167 14 Series

Monitor and Control Instructions

3.11 Manual Value Generator (MAN_GEN)

Table 11-21 ENCODER instruction

LAD/ FBD Description
<777> The MAN_GEN function generates a value that can be set or modified
MAN_GEN using switches. The output variable OUT can be increased or decreased
. —EN ENO—. . . step-by-step via the binary inputs OUT_UP and OUT_DN.
The range of the setpoint is restricted by the high/low limits H_LM/ L_LM
DF_OUT out . . L
in the value branch. The numerical values of the limits (as percentages)
] o are set using the corresponding input parameters. The signal outputs
- - QH_LM and QL_LM indicate when these limits are exceeded.
LM aLm— The rate of change of the output variable depends on the length of time
the switches OUT_UP or OUT_DN are activated and on the selected
—OuT_UP limits as shown below:
—QUT.DN During the first 3 seconds after setting OUT_UP or OUT_DN:
— DF_OUT ON doutv. - H LM-L LM
—RST ON dt 100 s
afterwards:
CYCLE

doutv. _ H_LM—L_LM

Supported Properties: None dt 10s
Table 11-22 Data types for the parameters
Parameter Data type Description
DF_OUT Real Default output variable
H_LM Real Input variable high limit
L_LM Real Input variable low limit
OUT_UP Bool QOutput variable up
OUT_DN Bool Output variable down
DF _OUT_ON | Bool Output default value on
RST_ON Bool Restart
CYCLE Time Sample time
ouT Real Qutput variable
QH_LM Bool Output variable high limit
QL_LM Bool Output variable low limit

SM Version 1.4

168 14 Series

Monitor and Control Instructions

Application

Using a higher/lower switch, you can adjust the internal setpoint.

H_LM

L LM

Figure 11-17 Changing OUT as a function of the switches OUT_UP and OUT_DN

3.12 Normalize (NORM)

Table 11-23 NORM instruction

LAD/ FBD Description
NORM Normalizes the parameter INV inside the value range specified by the
. »—EN—ENO—. . . IN_L and IN_H parameters:
9998 — vy ouT — =89 OUT = (INV = IN_L) / (IN_H = IN_L), where (0.0 <= OUT <=1.0)

277 — N L

<77%> — |N_H

Supported Properties: None

Table 11-24 Data types for the parameters

Parameter Data type Description

INV AnyNum Input variable
IN_L AnyNum Input low limit
IN_H AnyNum Input high limit
ouT AnyNum Normalized output

SM Version 1.4 169 14 Series

Monitor and Control Instructions

3.13 Standard PID (PID_STD)

Table 11-25 PID_STD instruction

LAD/ FBD Description
< This FB implements a complete PID controller with continuous
PID_STD manipulated variable output with the option of adjusting the manipulated
Com EN————————ENO—. .. value manually.
— MAN_ON MV Subfunctions can be enabled of disabled.
Using the FB, you are in a position to control technical processes and
MAN_MV CDEV systems with continuous input and output variables on 14PLC
- programmable logic controllers. The controller can be used as a fixed
setpoint controller either individually or in multi-loop control systems as a
- cascade, blending or ratio controller.
KP
Tl
D
— |_SEL
— D_SEL
CPO
cP1
CYCLE
—RST_OM

Supported Properties: None

Table 11-26 Data types for the parameters

Parameter Data type Description

MAN_ON Bool Manual value on (variable MAN_MV)

MAN_MV Real Manual MV variable

SP Real Setpoint

PV Real Process variable

KP Real Proportional gain

TI Real Reset time

TD Real Derivative time

I_SEL Bool Integral action on

D_SEL Bool Derivative action on

CPO Real Control parameter 0

CP1 Real Control parameter 1

CYCLE Time Sample time of controller

RST_ON Bool Initialize on

MV Real Manipulated value

C_DEV Real Control deviation (%)
Static Members

MV_LO Real Low limit of mv

MV_HI Real High limit of mv

DIST_BND Real Disturbance rejection band (%)

STD_BND Real Steady state band (%)

SM Version 1.4 170 14 Series

Monitor and Control Instructions

DER_N Real Derivative gain mode. 8<= x <= 20 : Damper gain for D on PV. 8 > x :
D with time lag

DS_CORR Real Dev supp Correction offset (%)

DS_PULUP_DEV | Real Dev supp Pull up deviation threshold

DS_PULDN_DEV | Real Dev supp Pull down deviation threshold

DS_PULUP_TRG | Time Dev supp Pull up time trigger

DS _PULDN_TRG | Time Dev supp Pull down time trigger

PRP_RT Real Proportional rate

INT_RT Real Integral rate

DER_RT Real Derivative rate

ERROR Real Control error

P_SEL Bool Proportional action on

C _DIR Bool Control direction. O=Inverse, 1=Direct

RMP_EQ Bool Ramp equivalence integration. 0=Disabled, 1=Enabled

SM_INIT Bool Smooth initialization. 0=Disabled, 1=Enabled

DS_PULUP Bool Deviation suppression Pull up on

DS_PULDN Bool Deviation suppression Pull down on

DS_PCT Bool Deviation suppression on percentage of error

QINT_ON Bool Integrator operation on

QDIST_REJ Bool Disturbance rejection activated

QDS_HI_OouUT Bool Dev supp PV greater than upper band range

QDS_LO_OuUT Bool Dev supp PV less than lower band range

QPB_OUT Bool Error is outside the proportional band

3.13.1 Block Diagram of the Standard Controller

The mode of operation is based on the PID control algorithm of the sampling controller with an analog output
signal, if necessary, supplemented by a pulse generator stage for generating pulse-duration modulated output
signals for two or three-step controllers with proportional actuators.

i ER MV
O—

PV 7T

Figure 11-18 Block Diagram of the Controller with Continuous Actuating Signal

SP

Y

3.13.2 Complete Restart/Restart

The PID_STD function block has an initialization routine that is run through when the input parameter RST_ON =
True is set.

3.13.3 Integral action (INT)

When the controller starts up, the integrator is set to the initialization value MAN_MV (if SM_INIT= True) and the
integral action is output at the MV output. When it is called by a periodic interrupt, it starts at this value.

All other outputs are set to their default values.

3.13.4 Manual Mode and Changing Modes

In addition to the “automatic” mode with the output switched to the output of the PID algorithm (MV), the Standard
PID Control also has a manual mode in which the manipulated variable can be influenced manually.

Using the parameter MAN the manipulated variable can be adjusted externally either setting the value manually
or by the user program setting the value when MAN_ON = True. The input value MAN is limited to the
manipulated variables MV_HI upper) and MV_LO (lower).

SM Version 1.4 171 14 Series

Monitor and Control Instructions

3.13.5 Automatic Mode

If MAN_ON = False is selected, the manipulated value of the PID algorithm is connected to the output. In manual
mode (MAN_ON = True) the integral components of the controller are disabled so that the controller begins with
a sensible manipulated variable when changing over to automatic mode only when SM_INIT = True.

3.13.6 Limiting the Absolute Value of the Manipulated

The operating range, in other words the range through which the actuator can move within the permitted range of
values, is determined by the range of the manipulated variable. Since the limits for permitted manipulated values
do not normally match the 0% or 100% limit of the manipulated value range, it is often necessary to further
restrict the range.

To avoid illegal statuses occurring in the process, the range for the manipulated variable has an upper and lower
limit in the manipulated variable branch MV_LO and MV_HI.

3.13.7 Control Algorithm and Controller Structure

Within the cycle of the configured sampling time, the manipulated variable of the continuous controller is
calculated from the error signal in the PID algorithm. The controller is designed as a parallel structure. The
proportional, integral and derivative actions can be deactivated individually.

P _SEL
P 0—O

Y

C_DIR
| |_SEL

ER D o . MV
\

AN
D SEL Linear combination

D O0—0

Y

Figure 11-19 Control Algorithm of the Standard PID Control (Parallel Structure)

3.13.8 Defining the Controller Structure

To define an effective controller structure, there are three switches available. The setting of this structure switch
is carried out in the configuration tool by selecting the P, | and D actions.

Table 11-27 Selecting the Controller Structure

Mode Switch | P_SEL |_SEL D_SEL
P controller True False False
PI controller True True False
PD controller True False True
PID controller True True True

Reversing the Controller Functions
You can reverse the controller from

e Rising process variable PV(t) — falling manipulated variable MV(t) (Inverse mode)
to the

e Rising process variable PV(t) — rising manipulated variable MV(t) (Direct mode)

by setting a True value for C_DIR switch. C_DIR decides the direction of the control action of the continuous
controller.

3.13.9 P Controller

In a P controller, the | and D actions are disabled. (I_SEL and D_SEL = False).
This means that if the error signal ER is 0, the output signal MV is also 0. If an operating point 0 is required, in
other words a numerical value for the output signal when the error signal is zero, the | action must be activated.

SM Version 1.4 172 14 Series

Monitor and Control Instructions

The step response of the P controller in the time domain is as follows:
MV (t) = KP * ER (t)

A MV MV(1)

ER(Y)

\J

Figure 11-20 Step Response of the P Controller

3.13.10 PI Control

In a PI controller, the D action is disabled. (D_SEL = False). A PI controller adjusts the output variable MV using
the I action until the error signal ER becomes zero. This only applies when the output variable does not exceed
the limits of the manipulated value.

The step response in the time domain is as follows:
MV (1) =KP *ER (t) * (1 +[dt/ TI)

A MV
MV/(t)
KP * ER(t) [dt/ Tl F |
__%_ |
|
KP * ER(t) ¢ 1 ERQ) J
=

Figure 11-21 Step Response of the Pl Controller

To allow a smooth changeover from the manual mode to the automatic mode of the Pl controller, the output
signal is switched to the internal memory of the integrator when the manipulated variable is being adjusted
manually (SM_INIT must be True).

To achieve a purely integrating control action disable the P action with P_SEL.

3.13.11 PD Controller

In the PD controller, the | action is deactivated (I-SEL = False). This means that if the error signal ER is zero, the
output signal MV is also zero. If an operating point 0 is required, in other words a numerical value must be set for
the output signal when the error signal is zero, then the | branch must be activated.

With the | action, an operating point 0 can be specified for the P controller by setting an initialization value. To do
this, set switch 'SM_INIT’ and ’'|_SEL’ to True.

The PD controller forms the input value ER(t) proportional to the output signal and adds the D action formed by
differentiating ER(t) that is calculated with twice the accuracy according to the trapezoidal rule (Padé
approximation). The time response is determined by the derivative action time TD. To damp signals and to
suppress disturbances, a first order time lag (adjustable time constant: DER_N) is integrated in the algorithm for
forming the D action. Generally, a small value (DER_N < 8) is adequate for DER_N to achieve a successful
outcome. If DER_N > 2/CYCLE is configured, the time lag is disabled.

The step response in the time domain is as follows:
MV (t) = KP * ER (t) * (1 + DER_N*TD*EXP(t*DER_N))

SM Version 1.4 173 14 Series

Monitor and Control Instructions

KP * ER(t) * DER_N*
TD*EXP(t*DER_N))

—

KP « ER() \ ER()

|
~—>{ 1/DER N

Figure 11-22 Step Response of the PD Controller

3.13.12 PID Controller

In a PID controller, the P, | and D actions are activated (P_SEL, |_SEL, D_SEL = True). A PID controller adjusts
the output variable MV using the | action until the error signal ER becomes zero. This only applies when the
output variable does not exceed the limits of the manipulated value. If the manipulated variable range limits are
exceeded, the | action retains the value that was set when the limit was reached (anti reset wind-up). The PID
controller forms the input value ER (t) proportional to the output signal and adds the actions formed by
differentiating and integrating ER (t) that are calculated with twice the accuracy according to the trapezoidal rule
(Padé approximation). The time response is determined by the derivative action time TD and the reset time TI.

To damp signals and to suppress disturbances, a first order time lag (adjustable time constant: DER_N) is
integrated in the algorithm for forming the D action. Generally, a small value (DER_N < 8) is adequate for DER_N
to achieve a successful outcome. If DER_N > 2/CYCLE is configured, the time lag is disabled.

The step response in the time domain is as follows:
MV (t) =KP *ER (t) * (1 + [dt/ TI + DER_N*TD*EXP(t*DER_N))
A vy

KP * ER(t) * DER_N*
TD*EXP(t*DER_N))

Y~

1/DER_N|
— T —>

Figure 11-23 Step Response of the PID Controller

3.13.13 Using and Assignhing Parameters to the PID Controller

The PI/PID functions of the Standard PID Control are capable of controlling most processes in industry.
Functions and methods beyond the scope of this controller are only necessary in special situations.

One practical problem nevertheless remains the assignment of parameters to PI/PID controllers, in other words
finding the “right” settings for the controller parameters. The quality of the parameter assignment is the decisive
factor in the quality of the PID control and demands either considerable practical experience, specialist
knowledge or a lot of time.

SM Version 1.4 174 14 Series

Monitor and Control Instructions

3.13.14 Permitted Ranges for Tl and CYCLE

Due to the limited accuracy of the REAL numbers calculated in the CPU, the following effect can occur during
integration: If the sampling time CYCLE is too small compared with the reset time Tl and if the input value ER of
the integrator is too small compared with its output value I, the integrator does not respond and remains at its
current output value.

This effect can be avoided by remembering the following rule when assigning parameters:
CYCLE > 104 *TI

With this setting, the integrator reacts to changes in the input values that are in the range of ten millionths of a
percent of the current output value:

ER > 10 10*|

To ensure that the transfer function of the integrator algorithm corresponds to the analog response, the sampling
time should be less than 20% of the reset time TI, in other words Tl should be five times higher than the selected
sampling time:

CYCLE<0.2*TI
The algorithm permits values for the sampling time up to CYCLE < 0.5 * TI.

3.13.15 Permitted Ranges for TD and CYCLE

To allow the derivative unit to process its calculation algorithm correctly in the CPU, keep to the following rules
when assigning the time constants:

TD =2 CYCLE and
1/DER_N=20.5*CYCLE
If a value less than CYCLE is set, the derivative unit operates as if TD had the same value as CYCLE.

If 1/DER_N is set to a value < 0.5 * CYCLE, the derivative unit operates without a delay. The input step change is
then multiplied by the factor TD/CYCLE and this value is applied to the output as a “needle pulse”. This means
that in the next processing cycle, D is reset to zero.

3.13.16 Windup

Although many aspects of a control system can be understood based on linear theory, some nonlinear effects
must be accounted for in practically all controllers. Windup is such a phenomenon, which is caused by the
interaction of integral action and saturations. All actuators have limitations: a motor has limited speed, a valve
cannot be more than fully opened or fully closed, etc. For a control system with a wide range of operating
conditions, it may happen that the control variable reaches the actuator limits.

When this happens the feedback loop is broken and the system runs as an open loop because the actuator will
remain at its limit independently of the process output. If a controller with integrating action is used, the error will
continue to be integrated. This means that the integral term may become very large or, colloquially, it “winds up”.
It is then required that the error has opposite sign for a long period before things return to normal. The
consequence is that any controller with integral action may give large transients when the actuator saturates. The
standard PID has an internal mechanism in order to prevent controller wind up called Anti-Windup and is enabled
by default.

3.14 PWM Signal Generator (PWM_GEN)

Table 11-28 PWM_GEN instruction

LAD/ FBD Description
Fifts The pulse generator module transforms the input variable INV
PWM_GEN modulating the pulse width into a pulse sequence with a period time,
Com EN———————ENO—. .. which has to be configured in PERIOD.
— RUN q— The duration of a pulse per period is proportional to the input value. The
cycle set by RUN is not identical to the processing cycle of the pulse
1NV generator.
PERIOD

Supported Properties: None

SM Version 1.4 175 14 Series

Monitor and Control Instructions

Table 11-29 Data types for the parameters

Parameter Data type Description
RUN Bool Run mode
INV Real Input variable as duty cycle. 0 <INV < 100
PERIOD Time Period of PWM signal
Q Bool Pulse output
Application

The PWM generation function generates the pulse output of a continuous controller so that proportional actuators
can be controlled by pulses using the Standard PID Control. This allows PID two-step and three-step controllers
to be implemented with pulse width modulation.

3.15 PID Tuner by Relay Method (RELAY_TUNE)

Table 11-30 RELAY_TUNE instruction

LAD/ FBD Description
SEs The PID autotuner works by performing a frequency-response
RELAY_TUNE estimation experiment. It injects test signals into the plant and tune
= ——— PID gains based on an estimated frequency response based on
Relay (Astrém—Hagglund) method.

— RUN MV
PV PHASE

sV QBUSY —
TUN_MOD KP
RSP_MOD T
CYCLE D
CPO
cP1

Supported Properties: None

Table 11-31 Data types for the parameters

Parameter Data type Description

RUN Bool Run mode

PV Real Process variable

SV Real Setpoint value. The process variable (PV) will be oscillated around the
SP during the tunning process

TUN_MOD INT Tune mode.0=P,1=PI,2=PID

RSP_MOD INT Response mode. 0 = Normal, 1 = Conservative, 2 = Aggressive

CYCLE Time Sample time

MV Real Manipulated value

PHASE Int Current operating phase

QBUSY Bool 1 = Identifying, 0 = Process accomplished

KP Real Proportional gain

TI Real Reset time

TD Real Derivative time

CPO Real Control parameter 0

CP1 Real Control parameter 1

SM Version 1.4 176 14 Series

Monitor and Control Instructions

Static Members

MV_LO Real Low limit of mv

MV_HI Real High limit of mv

HYST Real Hysteresis (%)
Application

The performance of an automatic PID controller tuning method based on relay feedback is studied in the
presence of deterministic disturbances. It is found that the occurrence of any static load disturbance could cause
significant errors in the estimates of the ultimate gain and period. However, the resultant asymmetry of the relay
switching intervals can be used as an error indicator, or used to compute a self-corrective bias to restore
accuracy of the estimates. This corrective bias is found to be functional even in the presence of moderate
nonlinearity. A reliable self-biasing auto-tuner is thus resultant. The effect of a less common sinusoidal load could
be more serious since it may not be detectable and hence more prior knowledge about its presence is required.

You should use this tuner for applications that have a large time lag and large time consuming for using step
response tuners (see SELF_TUNE). For example, a furnace with at least one hour time lag step response should
be tuned by RELAY_TUNE.

When you change the RUN input from False to True, the tuning process will be started. It will be proceeded in
several phases and finally will be accomplished at phase 6. You can see current state of tuner by checking the
PHASE output. In phase 6 the tuner has been accomplished its internal examinations and generates PID
operation gains KP, TI, TD, CPO and CP1 respected the TUN_MOD and RSP_MOD inputs. You can get PID
parameters for each operation mode while the tuner remains in phase 6. In the phase 6 if you change the RUN
input from True to False, its internal state will be reset.

3.16 Ramp Soak (RMP_GEN)

Table 11-32 RMP_GEN instruction

LAD/ FBD Description
<27 The ramp soak RMP_GEN supplies the output variable OUT according
RMP_GEN to a defined schedule. This function is started by setting the input bit
. —EN——————ENO—. .. RUN. If the value for operation mode OP_MOD = True, the function is
started again at the first time slice outv[0] after the last time slice
— RUN ouT outv[TMV_OUT_N] has been output. There is no interpolation between

the last and first time slice when operation mode is in cyclic repetition.

DF_OUT TGT_OUT
The sequence of the ramp soak is defined by specifying a series of time
—DFOUTON QRMP_OP— slices (between coordinates) in a shared array of user data type (UDT)
with the time values TMV_OUT_SJ[i].TMV and the corresponding output
TMS_N RMP_DIR values TMV_OUT_S [i].OUTV.
o TMV_OUT_S [i]. TMV specifies the length of time of the time slices.
TM_CONT N_ATMS S :))
There is linear interpolation between the coordinates.
— CONT_ON PROG
—HOLD RS_TM
OP_MOD T.T™
—RST_ON RT_TM
CYCLE
TMV_OUT N
TMV_OUT_S

Supported Properties: None

SM Version 1.4 177 14 Series

Monitor and Control Instructions

Table 11-33 Data types for the parameters

Parameter Data type Description
RUN Bool Run mode
DF_OUT Real Default output variable
DF_OUT_ON | Bool Output default value on
TMS_N Int Time slice number
TM_CONT Time Time to continue
CONT_ON Bool Continue
HOLD Bool Hold output variable
OP_MOD Int Operation mode. 0 = Single run, 1 = Continue last value, 2 = Repeat all
RST_ON Bool Restart
CYCLE Time Sample time
TMV_OUT_N | Int Number of coordinates
TMV_OUT_S | Variant[*] Coordinates source is an array of structure. The structure must contains
TMV' & 'OUT' elements
ouT Real Output variable
TGT_OUT Real Target output variable
QRMP_OP Bool Ramp operating
RMP_DIR Int Ramp direction. 0 = Disabled, 1 = Increasing, 2 = Soaking, 3 =
Decreasing
N_ATMS Int Number of acting time slice
PROG Real Progress (%)
RS ™™ Time Residual slice time
T_T™M Time Total time
RT_TM Time Residual total time
A out
TMV_OUT_S: TO

TO[3].0UT _________3 4

TO[4].0UT | | ouUT(t)

Tojout | 1 2 } }

TO[2].0UT ‘ ‘

0 } | | | 5
ToplouT | e e e e | L
)\ |)~ 2 2)~)‘ 3
©) @) @) @) @) @)
/0/.% %@ < s % s % s @.%
L L L L L L
Figure 11-24 Ramp Soak with Start Point and Six Time Slices

Q TIP

With n time slices the time value TMV_OUT_S [n-1].TMV for the last time slice will be processed. The
processing time of a ramp soak is calculated from the initial value down to 0.

Q TIP

During the interpolation of the ramp soak between the time slices, the output value may pause occasionally if
the sampling time CYCLE is very small compared with the time between the time between the time slices

TMV_OUT_S [n].TMV. The ramp soak cannot produce flat linear forms arbitrarily because of the
computational accuracy
of the CPU. If the ramp soak is too flat, the output value will pause at the respective time slice for a while and
then integrates with the minimum gradient to the next time slice.

SM Version 1.4

178

14 Series

Monitor and Control Instructions

Remedy: Reduce the time between the time slices by inserting additional time slices. This way you will get the
ramp soak output closer to the desired flat ramp soak in a trapeze from.

3.16.1 Using the Ramp Soak

The time slice parameters TMV_OUT_N, TMV_OUT_S [i]. TMV and TMV_OUT_S [i].OUT are located in an array
of an user data type (UDT).

e The parameter TMV_OUT_S [i].TMV must be specified in the Time format.
e The parameter TMV_OUT_S [i].OUT must be specified in the Real format.

e The way in which the coordinates and time slices are counted is illustrated in the following diagram.

L out _ TO[1].0UT TMV_OUT_S: TO
Coordinate 1 | TO[1].TMV TMS_N=0

| TO[1].0UT

Tolo].ouT Coordinatlb 2 TO[1].TMV

Start point TO[0].TMV
TO[OL.TMV —™—— TO[1]TMV ™~ TO[2J.TMV ™

\J

Figure 11-25 Counting the Coordinates and Time Slices

In normal operation, the ramp soak interpolates according to the following function where 0 < n < (TMV_OUT_N-
1).
3.16.2 Configuring the Ramp Soak

The number of configured coordinates (TMV_OUT_N) and the values for the setpoint SP assigned to the
individual time slices can be monitored and are located in an array of user data type. The output of the ramp soak
begins at start point [0] and ends with the coordinate [TMV_OUT_N].

3.16.3 Modes of the Ramp Soak
By influencing the control inputs, the following ramp soak statuses and operating modes can be implemented:
1- Ramp soak on for a single run.
2- Default value at output of ramp soak.
3- Repetition on (cyclic mode).
4- Hold processing of the ramp soak (hold setpoint value).

5- Set the time slice and time to continue (the remaining time TM_CONT and the time slice number
TMS_N are redefined).

6- Update the total processing time and total time remaining.

3.16.4 Activating the Ramp Soak

The change in RUN from False to True activates the ramp soak. After reaching the last time slice, the ramp soak
(curve) is completed. If you want to restart the function manually, RUN must first be set to False then back to
True.

During a complete restart, the OUT output is reset to 0.0 and the total time or total remaining time is calculated.
When it changes to normal operation, the ramp soak is processed immediately from the start point according to
the selected mode. If you do not require this, the parameter RUN when the complete restart must be set to False.

/\ WARNING

The function block does not check whether an array with the length TMV_OUT_N exists or not and whether
the parameter TMV_OUT_N number of time slices matches the array length. If the parameter assignment is
incorrect, the CPU changes to STOP due to an internal runtime error.

SM Version 1.4 179 14 Series

Monitor and Control Instructions

3.16.5 Preassigning the Output, Starting the Traveling Curve

If DF_OUT_ON = True, the output value of the ramp soak is set to the signal value DF_OUT. If DF_OUT_ON =
False, the curve starts from this point.

Q TIP

The switch DF_OUT_ON only has an effect when the ramp soak is activated (RUN = True).

The changeover from DF_OUT_ON =False is followed by the linear adjustment of OUT from the selected
setpoint to the output value of the current time slice number TMV_OUT_S[N_ATMS].OUT.

Internal time processing is continued even when a fixed setpoint is applied to the output (RUN = True and
DF_OUT_ON = True).

RUN — TMV_OUT_S: TO
DF_OUT_ON TMS_N=0
- l. M

——configured curve
—current curve

\ \
DF_OUT + .
| \
\ \
L _l
: \ | |

o) 170, 1 %, 12 o7 |

TO[OL.TMV | /’7% j /\’x% T8 /"/,\”llb o N
T | .
QRMP_OP [L] L

Figure 11-26 Influencing the Ramp Soak with the Default Signal DF_OUT_ON

When the ramp soak is started with RUN = True, the fixed setpoint DF_OUT is output until DF_OUT_ON
changes from True to False after the time T*. At this point, the time TO[0].TMV and part of the time TO[1]. TMV
has expired. The output value OUT is moved from DF_OUT to TO[2].OUT.

The configured curve is only output starting at coordinate 2, where the output signal QRMP_OP changes to the
value True. When the preassigned signal DF_OUT_ON changes from False to True while the travel curve is
being executed, the output value OUT jumps without delay to DF_OUT.

3.16.6 Cyclic Mode On

If the cyclic repetition mode is turned on (OP_MOD=2), the ramp soak returns to the start point automatically
after outputting the last time slice value and begins a new cycle.

There is no interpolation between the last time slice and the start point. The following must apply to achieve a
smooth transition: TMV_OUT_S[TMV_OUT_N-1].0UT = TMV_OUT_S [0].OUT.
3.16.7 Hold Setpoint Value

With HOLD = True, the value of the output variable (including the time processing) is frozen. When this is reset
(HOLD = False), the ramp soak continues at the point of interruption TMV_OUT_S[x]. TMV.

SM Version 1.4 180 14 Series

Monitor and Control Instructions

HOLD I_l—

DF_OUT ON ==

. TMV_OUT_S: TO
~ T TMS N=0

ouT4
—— configured curve

- current curve

|
|
|
3 4 OUTE)
| /
|

I
I
I
I
I
| * current values
|
|
I
I
I

2 A 2 2 A
% % % 1Y % %
“p N PN > PN
! 2
Configured time ‘ 7-

Figure 11-27 The Effect of the Hold Signal HOLD on the Ramp Soak

The processing time of the ramp soak is increased by the hold time T*. The ramp soak follows the configured
curve from the time slice to the signal change for HOLD (False — True) and from time slice 5* to time slice 6%, in
other words the output signal QRMP_OP has the value True.

3.16.8 Selecting the Time Slice and Time to Continue

If the control input CONT_ON is set to True to continue processing, then processing continues at the time
TM_CONT with the time slice TMS_N. The time parameter TM_CONT determines the time remaining that the
ramp soak requires until it reaches the destination time slice TMS_N.

SM Version 1.4 181 14 Series

Monitor and Control Instructions

/’-\ N .
/) o reaction
] —
CONT_ON M I
1 \ /
HOLD [|
: TMV_OUT_S: TO
Z TMS_N=0
out A I — configured curve
T = current curve

* current values

Y~©

Configured time

QRMP_OP i

Figure 11-28 How the HOLD Hold Signal and the CONT_ON Continue Signal Affect the Ramp Soak

The following applies to the example: If HOLD = True and CONT_ON = True and if the following is selected

time slice number to continue TMS_N = 5 and time remaining to selected time slice TM_CONT = T* then the
configured coordinates 3 and 4 are omitted in the processing cycle of the ramp soak. After a signal change at
HOLD from True to False the curve only returns to the configured curve starting at coordinate 5.

The output QRMP_OP is only set when the ramp soak has worked through the curve configured by the user.

3.16.9 Updating the Total Time and Total Time Remaining

In every cycle, the current time slice number N_ATMS, the current time remaining until the time slice RS_TM is
reached, the total time T_TM and the total time remaining until the end of the ramp soak RT_TM is reached are

updated.

If there are on-line changes to TMV_OUT_S[n].TMV, the total time and the total time remaining are changed.
Since the calculation of T_TM and RT_TM greatly increases the run time of the function block if there are a lot of
time slices, the calculation is only performed after a complete restart or when RST_ON = True. The time slices
TMV_OUT_S [0to TMV_OUT_S-1].TMV between the individual coordinates are totalled and indicated at the

output for the total time T_TM and for the total remaining time RT_TM.

Please remember that the calculation of the total times requires a relatively large amount of CPU time.

SM Version 1.4

182

14 Series

Monitor and Control Instructions

3.17 Limiting the Rate of Change of a Value (ROC_GEN)

Table 11-34 ROC_GEN instruction

LAD/ FBD Description

The ROC_GEN function limits the rate of change of the setpoints

777
— processed in the controller separately for the rate of change up and rate

- ROC_GEN ENO of change down and also separately for the positive and negative ranges.
The limits for the rate of change of the ramp function in the positive and
— RUN ouT negative range of the reference variable are entered at the four inputs
UPRLM_P, DNRLM_P, UPRLM_N and DNRLM_N. The rate of change is
INV QH_ LM — an up or down rate per second. Faster rates of change in the setpoint are
delayed by these limits.
UPRLM_P QLM —

If, for example, UPRLM_P is configured to 10.0 [technical range of
DNRLM P values/s], the following values are added to the ’old value’ of OUT in
B each sampling cycle as long as inv > OUT:

UPRLM_N Sample time

DMNRLM_M 1s—OUTold + 10

o 100 ms —OUT old + 1
10 ms —OUT old + 0.1

L_LM

How signals are handled by the function is illustrated by the following
CYCLE figure based on an example. Step functions at the input INV(t) become
ramp functions at output OUT(t).

Supported Properties: None

Table 11-35 Data types for the parameters

Parameter Data type Description

RUN Bool Run mode

INV Real Input variable

UPRLM_P Real Up rate limit in positive range
DNRLM_P Real Down rate limit in positive range
UPRLM_N Real Up rate limit in negative range
DNRLM_N Real Down rate limit in negative range
H_LM Real Input variable high limit

L_LM Real Input variable low limit

CYCLE Time Sample time

ouT Real Qutput variable

QH_LM Bool Output variable high limit
QL_LM Bool Output variable low limit

SM Version 1.4 183 14 Series

Monitor and Control Instructions

INV

INV(t)
ouT £

ouT(®)

__DNRLM_P

___— UPRLM_P UPRLM_P

-t

_ UPRLM_N

/d/ DNRLM_N

Figure 11-29 Limiting the Rate of Change of the Input Variable INV(t)

N

No signal is output when the rate of change limits are reached.

3.18 Scale (SCALE)

Table 11-36 SCALE instruction

LAD/ FBD Description
SCALE Scales the normalized real parameter INV where (0.0 <= INV <=1.0) in
. .—EN—END—. .. the data type and value range specified by the OUT_L and OUT_H
parameters:

<203 — NV OUT — <8785
OUT = INV (OUT_H - OUT_L) + OUT_L
33758 —ouT L

<7375 — oUT_H

Supported Properties: None

Table 11-37 Data types for the parameters

Parameter Data type Description
INV AnyNum Input variable
OUT_L AnyNum Output low limit
OUT_H AnyNum Output high limit
ouT AnyNum Scaled output

3.19 Gain Scheduling (SCH_GEN)

Table 11-38 SCALE instruction

LAD/ FBD Description
<7 The SCH_GEN generates a signal by using an array of key value pair
SCH_GEN and maps the change in input variable INV to output OUT by the
Co—EN—————————FNO—. . . schedule table SCHD_S.
INV ouT
KV_N
SCHD_S

SM Version 1.4 184 14 Series

Monitor and Control Instructions

Supported Properties: None

Table 11-39 Data types for the parameters

Parameter Data type Description
INV Real Input variable
KV_N Int Number of key value pairs. 2 =< x <=8
SCHD_S Real[*,*] Schedules list source. Key value pairs of (INV,0UT)
ouT Real Qutput variable
Application

Gain scheduling is valuable to adjust the controller parameters to different operating points, if a nonlinear process
shows a different behavior for each of its operating points.

The schedule for the adaptation of the parameters is determined by separate experiments at each of the different
operating points and is stored in the SCH_GEN function block. During a change between operating points the
controller automatically retrieves the correct parameters in the schedule. A new identification of the process
behavior according to new measurement data is not necessary, in contrast to a fully adaptive controller.
However, gain scheduling can be applied only if the nonlinearity of the process can be traced back to only one
measurable process variable in a reproducible way.

3.20 Scale With Parameters (SCP_NORM)

Table 11-40 SCP_NORM instruction

LAD/ FBD Description
SCP_NORM The instruction will take input, use input minimum IN_L and maximum
- T EN—ENO—. .. IN_H parameters as well as outputs minimum OUT_L and maximum

OUT_L parameters and convert the output scaling based on them.
<Px— NV OUT —<217>
This function commonly used for working with analog signals
22908 —IN_L
2777 — |M_H
23 —ouTL
<777> — OUT_H

Supported Properties: None

Table 11-41 Data types for the parameters

Parameter Data type Description
INV AnyNum Input variable
IN_L AnyNum Input low limit
IN_H AnyNum Input high limit
OUT_L AnyNum Qutput low limit
OUT_H AnyNum Output high limit
ouT AnyNum Scaled output

SM Version 1.4 185 14 Series

Monitor and Control Instructions

OUT_H

OuUT L
INV

Y

Figure 11-30 SCP_NORM normalization curve

NOTICE

The function does not limit any values and the parameters are not checked. If you enter the same value for
IN_L and IN_H, division by zero can occur in the function. The function does not rectify this fault.

3.21 PID Self Tuner (SELF_TUNE)

Table 11-42 SELF_TUNE instruction

LAD/ FBD Description
<TrE> One tuning method presented by Ziegler and Nichols is based on a
SELF_TUNE process information in the form of the open-loop step response obtained
oo EN——END—. .. from a bump test. This method can be viewed as a traditional method
based on modeling and control where a very simple process model is
—RUN MV used. The step response is characterized by its parameters and the
controller parameters are then obtained from the characterized process
B R parameters.
TUN_MOD QBUSY —
RSP_MOD DELAY
CYCLE RANK
— ACCUTUNE Kp
Tl
D
cPo
cPi

Supported Properties: None

Table 11-43 Data types for the parameters

Parameter Data type Description

RUN Bool Run mode

PV Real Process variable

TUN_MOD Int Tune mode. 0=P, 1=PI, 2=PID

RSP_MOD Int Response mode. 0=Normal, 1=Conservative, 2=Aggressive
CYCLE Time Sample time

ACCUTUNE Bool Tune accurately and more robust but more time consuming
MV Real Manipulated value

SM Version 1.4 186 14 Series

Monitor and Control Instructions

PHASE Int Current operating phase
QBUSY Bool 1 = Identifying, O = Process acomplished
DELAY Time Time lag include any existing dead time
RANK Int Controllability rank. x>100 : Easy, 30<x<100 : Somewhat Easy, x<30 :
Difficult
KP Real Proportional gain
Tl Real Reset time
TD Real Derivative time
CPO Real Control parameter 0
CP1 Real Control parameter 1
Static Members
MV_STP Real Manipulated value step
MAN_MV Real Initial manual power
WRM_TM Time Warmup time
WRM_MVT Time Manual power startup time
WRM_INT Time Warmup evaluation interval
MAN_INT Time Manual evaluation interval
STD_TH Real Steady state threshold
STRT_TH Real Start state threshold
CONT_STP Int Continue tuning steps count
CUR_STP Int Current tuning step

3.21.1 Areaof Application
PID SELF_TUNE is particularly useful for the following:
e Temperature controls (main application)
e Level controls
e Flow controls
In flow controls, a distinction must be made between situations in which only the control valve itself must be
controlled and situations in which the control valve regulates a process involving a time lag. The PID
SELF_TUNE cannot be used for simple control of a valve.
3.21.2 Process Requirements
The process must meet the following requirements:
e Stable, time lag, asymptotic transient response
e Time lags not too large
e Adequate linear response with an adequately large operating range
e Process controllable with a monopolar actuating signal 0 to 100%
e Little disturbance in temperature processes
e Adequate quality of the measured signals in the sense of an adequately high signal-to-noise ratio.

e Process gain not too high

3.21.3 Transient Response
The process must have a stable, asymptotic transient response with time lag.

After a step change in the manipulated variable (MV) the process variable must change to a steady state as
shown in following figure. This therefore excludes processes that have an oscillating response without control
and processes that are not self-regulating (integrator in the process).

SM Version 1.4 187 14 Series

Monitor and Control Instructions

Process response to
a manipulated value
step change

Figure 11-31 Process Response

3.21.4 Time Lags

The process must not involve large time lags. The range of application can be specified. The time lag includes
any existing dead time. Most temperature processes are within the default configurations of the function block
both a Pl or a PID controller can be designed for this range.

3.21.5 Linearity and Operating Range

The process must have an adequately linear response over an adequately large operating range.

This means that both during identification and during normal controlled operation, non-linear effects within the
operating range can be ignored. It is, however possible to re-identify the process when the operating point
changes if the adaptive process is repeated in the close vicinity of the new operating point and providing that the
non-linearity does not occur during the adaptation.

If certain static non-linearities (for example valve characteristics) are known, it is always advisable to compensate
these with a ramp soak to linearize the process behavior or use gain scheduling method in order to set suitable
PID parameters for each individual working are of process.

3.21.6 Monopolar Actuating Signal

It must be possible to control the process with a monopolar actuating signal.

Processes requiring active heating and active cooling for temperature control cannot currently be optimized with
the PID Self-Tuner.

3.21.7 Disturbances in Temperature Processes

Disturbances such as thermal transfer to neighboring zones or heating or cooling due to changes in the
equipment status must not affect the overall temperature process to any great extent. In some circumstances,
adaptation at the operating point is necessary.

3.21.8 Quality of the Measured Signals

The quality of the measured signals must be adequate, in other words the signal-to-noise ratio must be high
enough.

3.21.9 Process Gain

The process gain must not be too high.

Normalization of the process values is not required. The process gain K can, in some circumstances, include
physical units, for example:

SM Version 1.4 188 14 Series

Monitor and Control Instructions

K= APV g G
TAMVTT T %
The final controller design is based on a calculation of the process gain K and can therefore, in principle,
compensate any values of K. During the learning phase, however, K is initially unknown and with extreme
combinations of gain and test step change, overshoot cannot be avoided.

3.21.10 Processes with a Control Valve with Integral Action
In processes with control valves with an integral action, there are further requirements in addition to those above:

The motor actuating time of the control valve must be less than the time required to find a point of inflection
following a step change in the manipulated value.

If this is not the case, the process involved is often a flow control in which only the control valve is effective as the
dominating process action. The use of the PID Self-Tuner is then not advisable. You can the set the Pl step
controller according to the following rule of thumb:

GAIN (KP) =1, Tl = control valve actuating time

3.21.11 Learning Phases
The learning process involves the following steps:

. PHASE = 0:
When an instance of SELF_TUNE FB is created or the tuner is disabled, the parameter PHASE has the
default zero.

e PHASE=1-5:
Tunning transition steps

e PHASE=6:
In this phase, the tuner generates optimized parameters relative to the TUN_MOD and RSP_MOD.
You can get PID parameters for each operation mode while the tuner remains in phase 6. In the phase 6
if you change the RUN input from True to False, its internal state will be reset and the tuner will go to
PHASE 0.

NOTICE

Before activating RUN, the process must be in a steady state otherwise, you must then wait until the process
variable remains constant. This achieves a steady state (“cold” process state, initial state).

Q TIP

If it takes an extremely long time until the steady state is reached (creeping transient response in temperature
processes) you can lower the steady state threshold by increasing 5% the STD_TH value until pass the
current tunning phase.

Q TP

If the process cannot start by suddenly change in MV from cold state, you should set a value greater than
T#0s for WRM_TM static member to enable the warmup process. For example, some furnaces need a
warmup process in order to be applicable otherwise they may damage due to sudden temperature change.

Q TP

If the process is not linear or you want to run a gain scheduling program for PID parameters, you can set a
value greater than 0 for CONT_STP static member. In this case the controller repeats learning phases for a
number of steps determined by CONT_STP. For example, if you want to get parameters for a nonlinear
furnace you can set a value 3 for CONT_STP so, the learning phases will be repeated 3 times. Every repeat
learning phase will be increasing the MV by the value specified by MV_STP. When a learning phase
accomplishes, the QBUSY is set to false. You can check this flag in order to realize that the current learning
phase has been finished and pick the generated parameters by self-tuner. In the next cycle the QBUSY will be
set in order to show a new learning phase has been started.

SM Version 1.4 189 14 Series

Monitor and Control Instructions

3.22 Extracting the Square Root Normalization (SQRT_NORM)

Table 11-44 SQRT_NORM instruction

Description

LAD/ FBD
SQRT_NORM
o= EN———ENO—. . .
<777 — INV OUT — <2775

<737> — SORT_HR

<7115 — SORT_LR

Supported Properties: None

Table 11-45 Data types for the parameters

If the input variable supplied by a sensor is a physical value that is in
a quadratic relationship to the measured input variable, the changes

in the input variable must first be linearized before they can be
processed further in the other signal conditioners.

Parameter Data type Description

INV AnyNum Input variable

SQRT_HR AnyNum Normalization high range
SQRT_LR AnyNum Normalization low range
ouT AnyNum Normalized output

SQRT_HR

SQRT_LR

Y

Figure 11-32 The square root normalization

SM Version 1.4

190

14 Series

Monitor and Control Instructions

3.23 Stack Collection (STACK)

Table 11-46 STACK instruction

LAD/ FBD Description
< A stack is an array structure of function calls and parameters used in
STACK modern computer programming and CPU architecture. Elements in a
.. —EN——ENO—. . . stack are added or removed from the top of the stack, in a “last in first,
first out” or LIFO order.
M EMPTY —
— PUSH OFLO—
—FPOP
—FR1
IN
ouT
BUFFER

Supported Properties: None

Table 11-47 Data types for the parameters

Parameter Data type Description

N Int Maximum depth after reset
PUSH Bool Basic stack operations
POP Bool Basic stack operations

R1 Bool Over-riding reset

IN Variant Input to be queued

ouT Variant First element data
BUFFER Variant[*] External array

EMPTY Bool Stack empty

OFLO Bool Stack overflow

3.24 Three Step Signal Generator (THREE_STEP_GEN)

Table 11-48 THREE_STEP_GEN instruction

LAD/ FBD Description
<> Three step generator for PIDs when both the direct and inverse control
THREE_STP_GEN works together. In the “three-step generator” mode, the actuating signal
.. —EN————ENO—. . . can have three states, for example depending on the actuator and
process: more — off — less, forwards — stop — backwards, heat — off —
1NV ouT cool etc.
INV2 ouT2
COEFF1 QOUTIDB—
COEFF2 QOUT2DB—
DEADB_W
—FALS DB

Supported Properties: None

SM Version 1.4 191 14 Series

Monitor and Control Instructions

Table 11-49 Data types for the parameters

Parameter Data type Description

INV1 Real Input variable 1

INV2 Real Input variable 2

COEFF1 Real Input variable 1 coefficient
COEFF2 Real Input variable 2 coefficient
DEADB_W Real Dead band width

FALS DB Bool Falsify error outside dead band. 0=Disabled, 1=Enabled
OouT1 Real Output 1

ouT2 Real Output 2

QOuUT1DB Bool INV1 is within dead band
QOuUT2DB Bool INV2 is within dead band

3.25 Weighing System (WEIGH)

Table 11-50 WEIGH instruction

LAD/ FBD Description

<77%> Complete weighing system with Zero, Tare and calibration functions.
WEIGH
S —EN————————FNO—. ..
GRS_WT ouT
—TARE
—ZERO
— CALIE

REF_WT

Supported Properties: None

Table 11-51 Data types for the parameters

Parameter Data type Description

GRS_WT Real Raw value from loadcell (gross weight)

TARE Bool Command for Tare when the system is calibrated
ZERO Bool Command for zero when the calibration starts

CALIB Bool Command for calibration when the calibration finishes
REF_WT Real Reference weight when the calibration finishes

ouT Real Scaled output

SM Version 1.4 192 14 Series

Technology Instructions

Technology Instructions

Throughout a development process of control systems, control engineers deal with challenges like shorter
development time, higher quality and flexibility requirements and reusability of the control code. Since existing
technologies and approaches are limited by their effectiveness, new approaches are needed. This chapter will

provide common but high-level application solutions in order to lowering the programming time for PLC
developers.

Q TP

Some technology instructions may need a valid license to be compiled. In order to activate these instructions,

you should install license files on your programming device. To obtain a license file, you must contact the
INTELART's support unit.

SM Version 1.4 193 14 Series

Technology Instructions

1. Temperature Control

Temperature Controllers control temperature so that the process variable will be the same as the set point, but
the response will differ due to the characteristics of the controlled object and the configurations of the
Temperature Controller. Typically, a response where the set point is reached as quick as possible without
overshooting, is required in a Temperature Controller. There are also cases where a response quickly increases
the temperature even if it overshoots is required or where a response slowly increases the temperature is

required.

11 Temperature Control by TEMP_CONTROLLER
Table 12-1 TEMP_CONTROLLER instruction

LAD/ FBD

Description

<77

TEMP_CONTROLLER &

S —EN——————ENO—. . .
PV My
MIN_SP TGT_SP
MAX_SP CUR_SP
MAN_MV PROG
MAN_SP CON_DEV
CYCLE RS_TM

— HOLD T.TM™
— STARTUP RT_TM

— OPTIM_ON TUM_DELAY

— MAN_ON ALARM

— MAN_SP_ON RMP_DIR

— ACK_ALM N_ATMS

PTRN_CNT TUN_PHASE

PTRN_TMT TUN_RANK

PTRN_SPT QRMP_OP—

PRG_TAELE QCOMN_ON—

OPTIMIZER ~ QPWR_ON —

SELF_TUMER QTUNNING —

Supported Properties: None

Table 12-2 Data types for the parameters

Temperature control is a process in which change of temperature of a
space, or of a substance, is measured or otherwise detected, and the
passage of heat energy into or out of the space or substance is adjusted
to achieve a desired temperature. TEMP_CONTROLLER provides a
complete function block optimized for temperature control with algorithms
for loading and storing patterns and programs.

Parameter Data type Description

PV Real Process variable

MIN_SP Real Minimum allowed value for setpoints
MAX_SP Real Maximum allowed value for setpoints
MAN_MV Real Manual manipulated variable (%)
MAN_SP Real Manual setpoint value

SM Version 1.4

194 14 Series

Technology Instructions

CYCLE
HOLD
STARTUP
OPTIM_ON
MAN_ON
MAN_SP_ON
ACK_ALM
PTRN_CNT
PTRN_TMT
PTRN_SPT
PRG_TABLE
SELF_TUNER
OPTIMIZER
MV
TGT_SP
CUR_SP
PROG
CON_DEV
RS_TM
T.T™
RT_TM
TUN_DELAY
ALARM

RMP_DIR

N_ATMS
TUN_PHASE
TUN_RANK

QRMP_OP
QCON_ON
QPWR_ON
QTUNNING

PID_CONTROLLER

OPTIM_RMP

OPTIM_RMP_SPAN

Time
Bool
Bool
Bool
Bool
Bool
Bool
Int[*]
Time[*,*]
Real[*,*]
Variant[*]
SELF_TUNE
TEMP_OPT
Real
Real
Real
Real
Real
Time
Time
Time
Time

Int

Int

Int
Int
Int

Bool
Bool
Bool
Bool

PID_STD
Real

Real

Sample time of controller

Hold current setpoint

Initialize controller on startup

Optimizer enable. 0=Disabled, 1=Enabled
Manual value on (variable MAN_MV)

Manual setpoint on. 0=Ramp/Soak, 1=Step

Acknowledge alarm

Program patterns table count
Program patterns time table
Program patterns setpoint table
Program table

Self-tuner instance (Optional)
Optimizer instance (Optional)
Manipulated variable (%)
Target setpoint

Current setpoint

Progress (%)

Control deviation (%)
Residual slice time

Total elapsed time

Residual total time

Delay of system response
Alarm.

e 1=Warmup timeout
2=Temperature under range
3=Temperature over range
4=Invalid program table
5=Invalid time patterns
6=Invalid setpoint patterns
7=Invalid tuner instance
8=tune while control impossible
9=null optimizer

e 10=No program found
Ramp direction.

e 0 =Disabled

e 1 =lIncreasing

e 2= Soaking

e 3= Decreasing
Number of acting time slice
Current tunning operation phase
Rank of system controllability.

e Xx<30:Weak

e 30<x<100: Moderate

e x>100: Good
Ramp operating
Control process run
Main power switch
Tunning is in process.

True = Identifying

False = Tune accomplished
Static Members

Internal PID Controller Instance

Deviation suppressor threshold in ramp when optimizer enabled

(%)
Ramp span when optimizer enabled (%)

SM Version 1.4

195

14 Series

Technology Instructions

OPTIM_STD_UP
OPTIM_STD_DN

WDOG_SPAN
MAX_RMP_RATE
CUTOFF_TEMP
CON_WRM_TEMP
CON_WRM_POWER
CON_WRM_TMV
CON_WRM_TMOUT
TUN_WRM_TMV

MAN_DS_PULUP_TRG
MAN_DS_PULDN_TRG

PWR_LOSS_ACT

START_MOD

STOP_MOD

CUTOFF_MOD

CUR_PTRN
CON_MOD

TUN_RSP_MOD

PRG_CNT
CMD_START_CON
CMD_STOP_CON
CMD_START_TUN
CMD_STOP_TUN
CMD_SKIP_STEP
CMD_LOAD_PTRN
CMD_STORE_PTRN

CMD_CLR_ALL
SM_INIT

CON_WRM_ON

WDOG_ON

Real

Real

Real
Real
Real
Real
Real
Time
Time
Time
Time
Time
Int

Int

Int

Int

Int
Int

Int

Int

Bool
Bool
Bool
Bool
Bool
Bool
Bool

Bool

Bool

Bool

Bool

Deviation suppressor threshold in soak up when optimizer enabled
(°C)

Deviation suppressor threshold in soak down when optimizer
enabled (°C)

Watchdog Range (°C)

Maximum rate of SP ramp (°C/M)

Cutoff temperature

Controller warmup temperature

Controller warmup end power

Controller warmup time value

Controller warmup timeout

Tuner warmup time value

Dev supp pull up time trigger in manual setpoint mode

Dev supp pull down time trigger in manual setpoint mode
Power loss action.

e 0=Stop
e 1=Hold
. 2=Restart

e 3=Continue
Operation start Mode.
e 0=Normal
e 1=Start from Current PV
e 2=Start from current PV subtract warmup time
Operation stop mode
e 0=Single run
e 1= _Continue last value
e 2 =Repeatall
Cutoff mode.
e 0=Absolute
e 1=Relative
Set current selected pattern
Control mode.

. 0=P
e 1=PI
e 2=PID

Response mode.
e 0=Normal
e 1=Conservative
e 2=Aggressive
Current loaded program count
Start controller command
Stop controller command
Start self-tuner command
Stop self-tuner command
Skip to next program command
Loads a pattern to program table

Stores program table to patterns source and ensures ramps rate
be lower than 'MAX_RMP_RATE'

Clear all pattern program tables
Smooth initialization.

e False=Disabled

e True=Enabled
Controller warmup enabled.

e False=Disabled

e True=Enabled
Watchdog enable.

SM Version 1.4

196 14 Series

Technology Instructions

ACCUTUNE
QPRG_TABLE_UPD

Bool
Bool

e False=Disabled

e True=Enabled
Tune accurately and more robust but more time consuming
Program table updated

1.2 Temperature Control Optimizer (TEMP_OPT)

Table 12-3 TEMP_OPT instruction

LAD/ FBD Description
S Optimizer for ramp/soak temperature control by connecting a ramp
TEMP_OPT generator and a PID controller.
S —EN ENO—. . .
—RUN
PID_INST
RMP_INST
Supported Properties: None

Table 12-4 Data types for the parameters

Parameter Data Description

type
RUN Bool Run mode
PID_INST Variant | An INTELART PID function block instance
RMP_INST Variant | An INTELART Ramp generator function block instance

Static Members

STD_PULUP_DEV | Real Deviation suppressor Pull up threshold in steady state
STD_PULDN_DEV | Real Deviation suppressor Pull down threshold in steady state
INC_RMP_SPN Real Increasing ramp span. 0 < x < 100
INC_PULUP_DEV | Real Deviation suppressor Pull up threshold (%) in increasing state
INC_PULDN_DEV | Real Deviation suppressor Pull down threshold in increasing state
INC_HOLD_G Real Gain when an increasing ramp process holds
INC_RST_G Real Resting gain in increasing state
DEC_RMP_SPN Real Decreasing ramp span. 0 < x < 100
DEC_PULUP_DEV | Real Deviation suppressor Pull up threshold in decreasing state
DEC_PULDN_DEV | Real Deviation suppressor Pull down threshold in decreasing state
DEC_HOLD_G Real Gain when an decreasing ramp process holds
DEC_RST_G Real Resting gain in decreasing state
APP_RT Real Approaching rate. 0 <x <1
RST_RT Real Resting rate. 0 < x < 1 (calculates automatically on start)
ADAPT_ON Bool Adaptive optimization on
STD_ON Bool Enable deviation suppressor in steady state
STD_PCT Bool Enable calc on percentage of error in steady state
INC_ON Bool Enable deviation suppressor in increasing state
INC_PCT Bool Enable calc on percentage of error in increasing state
DEC_ON Bool Enable deviation suppressor in decreasing state
DEC_PCT Bool Enable calc on percentage of error in decreasing state

SM Version 1.4

197 14 Series

Online and Diagnostic Tools

Online and Diagnostic
Tools

The "Online & diagnostics" shows the diagnostic status and tools of the device.

SM Version 1.4 198 14 Series

Online and Diagnostic Tools

1. Status LEDs

The CPU and the 1/0 modules use LEDs to provide information about either the operational
status of the module or the I/O.

1.1 Status LEDs on a CPU
The CPU provides the following status indicators:
POWER
e Solid green indicates device has been powered up
STOP/RUN
e Off indicates STOP mode
e Solid green indicates RUN mode
e Flashing indicates that the CPU is in TRANSIENT-TO-RUN or TRANSIENT-TO-STOP mode
ERROR

e Solid red indicates an error, such as an internal error in the CPU or a configuration error (mismatched
modules)

2. Going online and connecting to a CPU

An online connection between the programming device and CPU is required for loading programs and project
engineering data as well as for activities such as the following:

e Testing user programs

¢ Displaying and changing the operating mode of the CPU

e Displaying and setting the date and time of day of the CPU

e Displaying the module information

¢ Downloading user program

¢ Displaying diagnostics data

e Using a watch table to test the user program by monitoring and modifying values
e Using a force table to force values in the CPU

To establish an online connection to a configured CPU, click the CPU from the Plant Explorer # Go Online
and click the "Go online” button on the main toolbar.

If this is the first time to go online with this CPU, you probably must set interface configuration before establishing
an online connection to a CPU found on that interface.

Device Programmer Configuration - [u] X

IP Address : |192.168.1.100 50 Search Network

Device Model Address Hardware Version Firmware Version Serial Number

Cancel @ ox

Your programming device is nhow connected to the CPU. The green color of status bar indicates an online
connection. You can now use the Online & diagnostics tools from the Plant Explorer and the Online tools.

CP300: Online BSiop HO04V @J1/1/2000 120043 AM 2

SM Version 1.4 199 14 Series

Online and Diagnostic Tools

3. Displaying the status of the CPU

You can view the status of an online CPU. Double-click on the “Online & diagnostic” in the Plant Explorer pane
then, go to Status tab in the opened editor.

f Devices & Networks™ €7 Main ST CydicProgram J9 sicoee [OIEGHESIERIEE e |

Status

Options
Device

Device : INTELART-CP300
Hardware Version : 1.0
Firmware Version: 1.0

Serial Number : E31CDF6829074307

Status
Device State : Stop
Battery Voltage : 0.4V
Program Missing : NG
Program Mismatch : [YES
Local 10 Fault :[NO
Runtime Error: | NG
Emergency Stop : NG
Memory Fault : NG

Checksum Errar: NG

4. Setting the date and time of day

You can set the date and time of day in the online CPU. After accessing "Online & diagnostics" from the Plant
Explorer for an online CPU, you can display or set the time and date parameters of the online CPU in the Options
tab.

Set Time
Year :| 2000 | Month: 1 = Day: 1 5| Hour:|0 = Minute: |9 = Second: 40 =
Take From BC Load Device Time Apply

5. Displaying or setting CPU configuration

You can display or set the configuration in the online CPU. After accessing "Online & diagnostics" from the Plant
Explorer for an online CPU, go to the Options tab.

Device Configuration

Start Mode ! Warm Start -

Modbus TCP Port: |0

4)r

Password : *
IP Address : 192,168.1.100
Subnet Mask : | 255.255.255.0
Gateway : 192.168.1.1
10 Medule Errer Action : Stop CPU -

Last digital input as emergency stop

Factory Reset Save Configs Load Apply

NOTICE

Changing in CPU configuration will be taken effect only after restarting the CPU.

6. Resetting to factory settings
You can reset an I4PLC to its original factory settings under the following conditions:

e The CPUisin STOP mode

SM Version 1.4 200 14 Series

Online and Diagnostic Tools

e Your programming device is disconnected from the CPU

e The connection configuration is set correctly (you can go online to the CPU)

NOTICE

If the CPU is in RUN mode and you start the reset operation, you will get an error. You must place it in STOP
mode by RUN/STOP switch.

6.1 Procedure
To reset a CPU to its factory settings, follow these steps:
1- Open the Online and Diagnostics view of the CPU.
2- Make sure you are offline to the CPU.
3- Click the "Factory Reset" button. Factory Resst

4- Acknowledge the confirmation prompt with "Yes".

6.2 Result
The CPU is reset to the factory settings:
e The load memory and all operand areas are cleared.

e All parameters are reset to their defaults.

7. CPU operator toolbar for the online CPU

The "CPU operator toolbar" displays the operating mode (STOP or RUN) of the online CPU. The status bar also
shows information about CPU and whether the CPU has an error or is in emergency stop.

Use the CPU operating toolbar of the Online Tools to change the operating mode of an online CPU. The Online
toolbar is accessible whenever the CPU is online.

8. Monitoring and modifying values in the CPU
Intelart Studio provides online tools for monitoring the CPU:

e You can display or monitor the current values of the tags. The monitoring function does not change the
program sequence. It presents you with information about the program sequence and the data of the
program in the CPU.

e You can also use other functions to control the sequence and the data of the user program:
e You can modify the value for the tags in the online CPU to see how the user program responds.
e You can force a peripheral output (such as Q0.1 or "Start") to a specific value.

e You cannot enable outputs in STOP mode.

/\ WARNING

Always exercise caution when using control functions. These functions can seriously influence the execution
of the user/system program.

8.1 Going online to monitor the values in the CPU

To monitor the tags, you must have an online connection to the CPU. Simply click the "Go Online" # Go Online
button in the toolbar.

When you have connected to the CPU, Intelart Studio turns the status bar green.

CP300: Online BStop HO04V @J1/1/2000 12:00:43 AM 2
To monitor the execution of the user program and to display the values of the tags, by BT
go to “Watch & Force List” in Plant Explorer then, click the "Watch Continuously” s

i '}'Peﬂ'
button in the toolbar. Watch Continuously

SM Version 1.4 201 14 Series

Online and Diagnostic Tools

8.2 Displaying status in the program editor -
Bir
You can monitor the status of the tags in the LAD and FBD program editors. Use E}

the editor bar to display the LAD editor. The editor bar allows you to change the = e

view between the open editors without having to open or close the editors.

In the toolbar of the program editor, click the "Monitor Continuously" button to display the status of your user
program.

True True _ MotorTON False
Start Enable T Ton Matar
1
iIN Qb-----m==m—=-- { }--n

T#ImOms ! | T#125713ms

T#0ms :E'I;______E‘L: T#0ms
False
Stop

The network in the program editor displays power flow in green.

You can also right-click on the instruction or parameter to modify the value for the instruction.

True True MatarTON True
Start Enable TON Matar
M aQ 1
T#1mlms T#1Imdms
T�ms—{PT ET—T#0ms
False
4 X, Delete Del
‘_i Modify Argument
. Modify to True [
¥, Moadify to False
Goto Definition F12

-
+

@ Cross References

Q TP

When you enable a watchlist CP300: Online P Run @04V & 1/1/2000 3:19:44 AM

monitoring or a program block
monitoring, Intelart Studio turns the status bar orange.

8.3 Using a watch table to monitor and modify values in the CPU

A watch table allows you to perform monitoring and control functions on data points as the CPU executes your
program. These data points can be process image (I or Q), M or G on the monitor or control function. You cannot
accurately monitor the physical outputs (Q) because the monitor function can only display the last value written
from Q memory and does not read the actual value from the physical outputs. The monitoring function does not
change the program sequence. It presents you with information about the program sequence and the data of the
program in the CPU.

Control functions enable the user to control the sequence and the data of the program.

Caution must be exercised when using control functions. These functions can seriously influence the execution of
the user/system program. The two control functions are Modify and Force.

With the watch table, you can perform the following online functions:
e Monitoring the status of the tags
e Modifying values for the individual tags

e Forcing values in the CPU

SM Version 1.4 202 14 Series

Online and Diagnostic Tools

e Logging tags data in a csv file on the programming device

Add new watchlist item by clicking on the “Add New ltem’ button in the toolbar.

&
Add Mew ltem

Enter the tag name to monitor and select a display format from the dropdown selection. With an online
connection to the CPU, clicking the "Watch Continuously " button displays the actual value of the data point in the
"Monitor value" field.

The “Modify Selected Items” button modifies the selected tag values by the value = @ % F, F. & % 7
provided by “Modify Value” cell. o

T Maodify Selected Items

The “Start Force Selected Items” provides a force function that overwrites the value for a memory or output point
to a specified value for the memory tags or peripheral output address. The CPU applies this forced value to the
memory tags on demand and output process image before the outputs are written to the modules.

You cannot force an input ("I" address).

In the "Force value" cell, enter the value for the input or output to be forced. You can then use the check box in
the "Select" column to enable forcing of the memory or output.

Use the " Start Force Selected Items" button to force the value of the tags in the table. Click the " Stop F, Fa
Force Selected Items" button to reset the value of the selected forced tags.
B a % FF oo

3 Name = ress Display Format Monitor Value Modify Value Captured Value Select Log Comment Tag Comment
Start Force Selected [tems
Matar — . Default False False v

In the table, you can monitor the status of the forced value for a tag. You can also view the status of the forced
value in the program editor.

True True MotorTON False
Start Enable TON Motor
1N] 1
T#1m0Oms T#Im0Oms
T#0ms=—PT ET/—T#0ms
False
Stop
NOTICE

When a tag is forced, the force actions become part of the current executing program. If you close Intelart
Studio, the forced elements remain active in the CPU program until they are cleared or a CPU STOP. To clear
these forced elements, you must use Intelart Studio to connect with the online CPU and then use the watchlist
to turn off or stop the force function for those elements.

In the program, reads of physical inputs overwrites the forced value. The program uses the forced value in
processing. When the program writes a physical output, the output value is overwritten by the force value. The
forced value appears at the physical output and is used by the process.

When a tag or output is forced in the watchlist, the force actions become part of the current executing program.
Even though the programming software has been closed, the force selections remain active in the operating CPU
program until they are cleared by going online with the programming software and stopping the force function. A
CPU STOP will clear all the forces states also.

9. Recovery from a lost password

If you have lost the password for a password-protected CPU, you must use factory reset tool (6Resetting to
factory settings).

10. Runtime Exceptions

Runtime is a stage of the programming lifecycle. It is the time that a program is running alongside all the external
instructions needed for proper execution. Some of these external instructions are called runtime systems or

SM Version 1.4 203 14 Series

Online and Diagnostic Tools

runtime environments and come as integral parts of the CPU. A runtime system creates a layer over the
operating system (OS) that contains other programs that handle the tasks needed to get the main program
running. These other programs handle tasks such as allocating memory for the main program and scheduling it.

When a program is at the runtime stage, the executable data of the program is loaded into Application Memory,
along with any data that the program references. These may include code that the user did not write but that
works in the background to make the program run. It then makes the hardware run the program.

Many users first encounter the term runtime in the context of a runtime exception (runtime error). This refers to a
problem with the program that keeps it from executing at runtime due to any damaged, missing or incompatible
components or program.

Runtime exceptions can happen for many reasons. The following describes a list of CPU runtime exceptions:

Table 13-1 CPU runtime exceptions

Code

Exception

Description

R0O00

R0OO1

R002

R0O03

R0O04

R0O05

R0O06

R0OO7

R0O08

Unknown Exception

Overflow Exception

Invalid Type Exception

Invalid Name Exception

OS Exception

Out of Memory Exception

Invalid Value Exception

Index Out of Range Exception

Invalid Program Exception

An unknown exception has occurred and the source of this error
cannot be identified. Please call the INTELART support.

An overflow exception is when the tag type used to store data
was not large enough to hold the data. Some tag types can only
store numbers up to a certain size. An overflow exception will
be produced, for example, if a tag type is SINT and the data to
be stored is greater than 127. Also, an invalid cast exception is
considered as an overflow exception.

The Invalid Type Exception represents an error when an
operation could not be performed, typically (but not exclusively)
when a value is not of the expected type. An Invalid Type
Exception may be thrown when: an operand or argument
passed to a function or an instruction is incompatible with the
type expected by that operator or function. For example, using a
VAR_MOVE to pass a DATE to an INT tag will produce an
invalid type exception. A null reference exception also is
considered as an invalid type exception.

Invalid Name Exception is a kind of error that occurs when
executing a function, tag or user data type that have been used
in the code without any previous Declaration. When the CPU
cannot identify the global or a local name, it produces an Invalid
Name Exception.

OS Exception is a built-in exception in CPU which is raised
when an OS specific system function returns a system-related
error, including I/O failures such as “file not found” or “memory
failure”.

An Out of Memory Exception is raised when an operation fills all
the available memory in the CPU. One of the most obvious
reasons causing this issue is the complexity of functions
(function blocks) call tree or lots of programming instances.

An Invalid Value Exception is raised when a user gives an
invalid value to a function but is of a valid argument. It usually
occurs in operations that will require a certain kind of value,
even when the value is the correct argument.

Index Out of Range Exception is an error that occurs when we
try to access an element from an array from an index that is not
present in the array. For example, in an array of 10 elements,
the index is in the range 0 to 9. If a try to access an element at
index 10 or 11 or more, it will cause the CPU to produce an
Index Out of Range Exception.

Invalid Program Exception is an error that occurs when we try to
access an element from another element such as a function
block or a user data type. For example, in a function block
contains 2 elements 'Tagl' and 'Tag2', If a try to access an
element with name 'Tag3', it will cause the CPU to produce an
Invalid Program Exception.

SM Version 1.4

204 14 Series

Online and Diagnostic Tools

Q TP
When the CP300: Online O TransientToStop B 0.4V & 1/1/2000 3:22:32 AM
CPU

enters a runtime exception or an emergency stop state, Intelart Studio turns the status bar red. By clicking on
the “More Detail” button, the Intelart Studio will navigate you to the source of exception.

11. CPUregisters

A CPU register is one of a small set of data holding places that are part of the CPU management system. CPU
registers is predefined in another memory area called “Special Memory” (S). You can access this area of memory
like other memory areas and use tags predefined in this area.

Q TP
An external tag table named “CPU_Registers” generates by Intelart 4 [g PLCTags
Studio automatically when you add a new device to your project. b '8 User DataTypes

#9 Add New External Table
*9 Add New Global Table
dp Default TagTable

MM External TagTable

Table 13-2 CPU registers list

Name Data type | Address | Description

spDevice_ID Ulnt %SWO0 Device identification

spHW_VER Ulint %SW2 Hardware version

spFW_VER Ulnt %SW4 Software version
SpSERIAL_NUMBER | ULInt %S8.0 Device serial number
SpTIMESTAMP DateTime | %SD16 | Current timestamp

SpUPTIME Time %SD20 Device uptime

spBAT_VOLTAGE Ulnt %SW?24 | Backup battery voltage

SpYEAR USint %SB26 Year component of the current date
SpPMONTH usSint %SB27 Month component of the current date
spDAY USint %SB28 Day component of the current date
SpHOUR USint %SB29 Hour component of the current date
SpMINUTE usint %SB30 Minute component of the current date
SpSECOND USint %SB31 Second component of the current date
SpWEEKDAY USint %SB32 Weekday component of the current date
SpOVERFLOW Bool %S40.0 | Overflow occured

spDIV_BY_ZO Bool %S40.1 | Divide by zero occured

splO_ERR Bool %S40.2 | 1/O error state

SpTYPE_ERR Bool %S40.3 | Type error state

SpFLASH_STT Bool %S40.4 | status of load memory
spCOLD_STRT Bool %S41.0 | Cold start mode

SPEMG_STOP Bool %S41.1 | Emergency stop state

spRUN_MOD Bool %S41.2 | CPU run mode

SM Version 1.4 205 14 Series

Remarks Form
Your comments and recommendations will help us to improve the quality and usefulness of our publications.
Please take the first available opportunity to fill out this questionnaire and send it to INTELART.

Please give each of the following questions your own personal mark within a range from 1 (very good) to 5 (very
poor).

1. Do the contents meet your requirements?
2. Is the information you need easy to find?
3. Is the text easy to understand?

4. Does the level of technical detail meet your requirements?

|

5. Please rate the quality of the graphics and tables.

Additional comments:

NOTICE

Contents of this publication may change without prior notice.

	1 Product Overview
	1. I4 PLC
	2. I4 PLC Expansion Modules
	3. Intelart Studio Programming Package
	3.1 Computer Requirements
	3.2 Installing Intelart Studio

	4. Communications Options

	2 Getting Started
	1. Connecting the I4 PLC
	1.1 Connecting Power to the I4 PLC
	1.2 Connecting the Programming Cable
	1.3 Starting Intelart Studio
	1.4 Establishing Communications with the I4 PLC

	2. Creating a Sample Program
	2.1 Opening the Program Editor
	2.2 How to Program
	2.3 Saving the Sample Project

	3. Downloading the Sample Program
	4. Placing the I4 PLC in RUN Mode
	5. Easy-to-use tools
	5.1 Inserting instructions into your user program
	5.2 Inserting Instructions from the “Quick Access” Toolbar
	5.3 Adding inputs or outputs to a LAD or FBD instruction
	5.4 Selecting a version for an instruction
	5.5 Modifying the appearance and configuration of Intelart Studio
	5.6 Changing the operating mode of the CPU
	5.7 Modifying the Hardware Configuration of CPU and Expansion Modules
	5.8 Mapping Module Tags
	5.9 Importing license files

	3 Installing the I4 PLC
	1. Guidelines for Installing I4 PLC Devices
	1.1 Separate the I4 PLC Devices from Heat, High Voltage, and Electrical Noise
	1.2 Provide Adequate Clearance for Cooling and Wiring

	2. Installing and removing the I4 PLC Modules
	2.1 Prerequisites
	2.2 Mounting Dimensions
	2.3 Installing a CPU or Expansion Module
	2.4 Removing a CPU or Expansion Module

	3. Guidelines for Grounding and Wiring
	3.1 Prerequisites
	3.2 Guidelines for Isolation
	3.3 Guidelines for Grounding the I4 PLC
	3.4 Guidelines for Wiring the I4 PLC
	3.5 Guidelines for Inductive Loads
	3.6 Guidelines for Lamp Loads

	4 PLC Concepts
	1. Execution of the user program
	1.1 Operating modes of the CPU
	1.2 Processing the scan cycle in RUN mode
	1.3 Organization blocks (OBs)
	1.4 CPU memory
	1.4.1 Retentive memory

	1.5 Time of day clock
	1.6 Configuring the outputs on a RUN-to-STOP transition

	2. Data storage, memory areas, I/O and addressing
	2.1 Accessing the data of the I4 PLC
	2.1.1 Accessing the data in the memory areas of the CPU

	2.2 Configuring the I/O in the CPU and I/O modules

	3. Processing of analog values
	4. Data types
	4.1 Bool, Byte, Word, DWord and LWord data types
	4.2 Integer data types
	4.3 Floating-point real data types
	4.4 Time and Date data types
	4.4.1 Time
	4.4.2 Date
	4.4.3 TOD
	4.4.4 DT

	4.5 Character and String data types
	4.5.1 Char
	4.5.2 String

	4.6 Array data type
	4.7 Data structure data type
	4.8 User data type
	4.9 Pointer data types
	4.9.1 "Any" pointer data type
	4.9.2 "Variant" pointer data type

	5 Device Configuration
	1. Inserting a CPU
	2. Adding modules to the configuration
	3. Configuring the operation of the CPU
	4. Configuring the parameters of the modules
	4.1 Assigning Internet Protocol (IP) addresses
	4.1.1 Assigning IP addresses to programming and network devices
	4.1.2 Checking the IP address of your programming device
	4.1.3 Modifying an IP address to a CPU online
	4.1.4 Configuring an IP address for a CPU in your project

	6 Programming Concepts
	1. Guidelines for designing a PLC system
	2. Structuring your user program
	2.1 Choosing the type of structure for your user program

	3. Using blocks to structure your program
	3.1 Organization block (OB)
	3.1.1 Creating an additional OB within a class of OB
	3.1.2 Configuring the operation of an OB

	3.2 Function (FC)
	3.3 Function block (FB)
	3.3.1 Reusable code blocks with associated memory
	3.3.2 Assigning the start value in the instance
	3.3.3 Using a single FB with multiple instances
	3.3.4 Creating reusable code blocks

	4. Understanding data consistency
	5. Programming language
	5.1 Ladder logic (LAD)
	5.2 Function Block Diagram (FBD)
	5.3 EN and ENO for LAD and FBD
	5.3.1 Determining "power flow" (EN and ENO) for an instruction

	6. Protection
	6.1 Access protection for the CPU
	6.1.1 Going online to a protected CPU

	6.2 Program blocks protection
	6.3 Copy protection
	6.4 Downloading a compiler binary output file

	7. Downloading the elements of your program
	7.1 Transfer Program to SD Card

	8. Uploading from the CPU
	9. Monitoring and testing the program
	9.1 Monitor and modify data in the CPU
	9.2 Watch and force list
	9.3 Cross reference to show usage
	9.4 Call structure to examine the calling hierarchy

	7 Basic Instructions
	1. Bit logic
	1.1 Bit logic contacts and coils
	1.1.1 LAD contacts

	1.2 Set and reset instructions
	1.3 Positive and negative edge instructions

	2. Word logic operations
	2.1 AND, OR, and XOR instructions
	2.2 Invert instruction
	2.3 Shift and Rotate
	2.3.1 Shift instructions

	2.4 Rotate instructions

	3. Comparison
	3.1 Compare
	3.2 In-range and Out-of-range instructions

	4. Math
	4.1 Add, subtract, multiply and divide instructions
	4.2 Modulo instruction
	General exponentiation instruction
	4.3 Absolute value instruction
	4.4 Increment and decrement instructions
	4.5 Floating-point math instructions

	5. Timer and Counter
	5.1 Timers
	5.1.1 Operation of the timers
	5.1.2 Timer programming
	5.1.3 Time data retention after a RUN-STOP-RUN transition or a CPU power cycle
	5.1.4 Assign a global DB to store timer data as retentive data

	5.2 Counters
	5.2.1 Operation of the counters
	5.2.2 Counter data retention after a RUN-STOP-RUN transition or a CPU power cycle
	5.2.3 Assign a global DB to store counter data as retentive data

	6. Moving and conversion
	6.1 Move instructions
	6.2 Accessing data by array indexing
	6.3 Convert instruction
	6.4 BCD conversion instructions
	6.5 Round, ceiling, floor and truncate instructions
	6.6 Swap instruction
	6.7 Serialize instruction
	6.8 Deserialize instruction

	7. Program Control
	7.1 FOR statement
	7.2 WHILE statement
	7.3 IF statement
	7.4 RET execution control instruction

	8. Selection
	8.1 Select
	8.2 Get maximum and minimum
	8.3 Limit instruction
	8.4 Multiplex instruction
	8.5 Check for nullity
	8.6 Check for array
	8.7 Get array length

	9. Time
	9.1 Time add and subtract
	9.2 Time multiplication and division
	9.3 Time of day addition and subtraction time
	9.4 Date addition and subtraction time
	9.5 Date subtraction
	9.6 Time of day subtraction
	9.7 Date and time subtraction
	9.8 Time concatenation

	10. Character and string
	10.1 String data overview
	10.2 String operation instructions
	10.2.1 LEN
	10.2.2 LEFT and RIGHT
	10.2.3 MID
	10.2.4 CONCAT
	10.2.5 INSERT
	10.2.6 DELETE
	10.2.7 REPLACE
	10.2.8 FIND

	8 System Instructions
	1. Memory management
	1.1 RWW_NVMEM instruction

	2. System Time Management
	2.1 GET_SYS_DT instruction
	2.2 SET_SYS_DT instruction
	2.3 SYS_TICK instruction

	3. Comm ports management
	3.1 SET_SYS_IP

	9 Communication Instructions
	1. RS-232 interface
	2. RS-485 interface
	2.1 Bias resistors
	2.2 Termination resistors
	2.3 Shielding and grounding considerations
	2.4 Cable requirements

	3. Controller Area Network (CAN) interface
	4. Ethernet interface
	4.1 Modbus TCP/IP
	4.2 EtherCAT
	4.3 Ethernet/IP
	4.4 PROFINET

	5. Programming instructions
	5.1 Serial
	5.1.1 SERIAL_INIT instruction
	5.1.2 SERIAL_GET_STAT instruction
	5.1.3 SERIAL_READ_BUF instruction
	5.1.4 SERIAL_SEND_BUF instruction

	6. Modbus communication
	6.1 Overview of Modbus RTU and TCP communication
	6.1.1 Modbus function codes
	6.1.2 Modbus memory addresses
	6.1.3 Modbus RTU communication
	6.1.4 Modbus TCP communication
	6.1.5 Modbus RTU instructions in your program
	6.1.6 Modbus TCP instructions in your program

	6.2 Modbus RTU
	6.2.1 MB_SLAVE
	6.2.2 Modbus RTU slave example program
	6.2.3 MB_MASTER
	6.2.4 Modbus RTU master example program

	6.3 Modbus TCP
	6.3.1 MB_SERVER
	6.3.2 MB_SERVER example
	6.3.3 MB_CLIENT
	6.3.4 MB_CLIENT example

	10 IEC 61131-3 Solutions
	1. CMD_MONITOR instruction
	2. STACK_INT FB instruction
	3. LAG1 FB instruction
	4. DELAY FB instruction
	5. AVERAGE FB instruction
	6. INTEGRAL FB instruction
	7. DERIVATIVE FB instruction
	8. HYSTERESIS FB instruction
	9. LIMITS_ALARM FB instruction
	10. ANALOG_MONITOR FB instruction
	11. IEC_PID FB instruction
	12. RAMP FB instruction
	13. TRANSFER FB instruction

	11 Monitor and Control Instructions
	1. Designing Digital Controllers
	1.1 Process Characteristics and Control
	1.1.1 Process Characteristics and the Controller
	1.1.2 Process Analysis
	1.1.3 Type and Characteristics of the Process

	1.2 Feedforward Control
	1.3 Multi-Loop Controls
	1.3.1 Processes with Inter-dependent Process Variables

	1.4 Structure and Mode of Operation of the PID Control
	1.4.1 Control Algorithm and Conventional Control
	1.4.2 The Functions of the “Standard PID Control”

	1.5 Signal Processing in the Setpoint Branch
	1.6 Signal Processing in the PID Controller

	2. Configuring and Starting the Standard PID Control
	2.1 Defining the Control Task
	2.2 Type of Actuator
	2.3 Generating the Control Project Configuration
	2.4 The Sampling Time CYCLE
	2.4.1 The Sampling Time: CYCLE
	2.4.2 Equivalent System Time Constant
	2.4.3 Sampling Time Estimate
	2.4.4 Rule of Thumb for Selecting the Sampling time

	2.5 How the Standard PID Control is Called
	2.6 Range of Values and Signal Adaptation (Normalization)
	2.6.1 Internal Numerical Representation
	2.6.2 Signal Adaptation

	3. Signal Processing in the Setpoint/Process Variable Channels and PID Controller Functions
	3.1 Average Value Generator (AVG_GEN)
	3.2 Rate of Change Alarm Generator (CHG_ALM)
	3.3 Cycle Time Calculator (CYC_TM)
	3.4 Filtering Signal Function (DEADBAND)
	3.5 Unsigned Int to Signed Int Encoder (ENCODER)
	3.6 First In First Out (FIFO)
	3.7 Asymmetric Hysteresis Generator (HYST_GEN)
	3.8 Damping the Process Variable (LAG1_GEN)
	3.9 Monitoring a Process Variable Limits (LIM_ALM)
	3.10 Loop Scheduler (LP_SCHED)
	3.11 Manual Value Generator (MAN_GEN)
	3.12 Normalize (NORM)
	3.13 Standard PID (PID_STD)
	3.13.1 Block Diagram of the Standard Controller
	3.13.2 Complete Restart/Restart
	3.13.3 Integral action (INT)
	3.13.4 Manual Mode and Changing Modes
	3.13.5 Automatic Mode
	3.13.6 Limiting the Absolute Value of the Manipulated
	3.13.7 Control Algorithm and Controller Structure
	3.13.8 Defining the Controller Structure
	3.13.9 P Controller
	3.13.10 PI Control
	3.13.11 PD Controller
	3.13.12 PID Controller
	3.13.13 Using and Assigning Parameters to the PID Controller
	3.13.14 Permitted Ranges for TI and CYCLE
	3.13.15 Permitted Ranges for TD and CYCLE
	3.13.16 Windup

	3.14 PWM Signal Generator (PWM_GEN)
	3.15 PID Tuner by Relay Method (RELAY_TUNE)
	3.16 Ramp Soak (RMP_GEN)
	3.16.1 Using the Ramp Soak
	3.16.2 Configuring the Ramp Soak
	3.16.3 Modes of the Ramp Soak
	3.16.4 Activating the Ramp Soak
	3.16.5 Preassigning the Output, Starting the Traveling Curve
	3.16.6 Cyclic Mode On
	3.16.7 Hold Setpoint Value
	3.16.8 Selecting the Time Slice and Time to Continue
	3.16.9 Updating the Total Time and Total Time Remaining

	3.17 Limiting the Rate of Change of a Value (ROC_GEN)
	3.18 Scale (SCALE)
	3.19 Gain Scheduling (SCH_GEN)
	3.20 Scale With Parameters (SCP_NORM)
	3.21 PID Self Tuner (SELF_TUNE)
	3.21.1 Area of Application
	3.21.2 Process Requirements
	3.21.3 Transient Response
	3.21.4 Time Lags
	3.21.5 Linearity and Operating Range
	3.21.6 Monopolar Actuating Signal
	3.21.7 Disturbances in Temperature Processes
	3.21.8 Quality of the Measured Signals
	3.21.9 Process Gain
	3.21.10 Processes with a Control Valve with Integral Action
	3.21.11 Learning Phases

	3.22 Extracting the Square Root Normalization (SQRT_NORM)
	3.23 Stack Collection (STACK)
	3.24 Three Step Signal Generator (THREE_STEP_GEN)
	3.25 Weighing System (WEIGH)

	12 Technology Instructions
	1. Temperature Control
	1.1 Temperature Control by TEMP_CONTROLLER
	1.2 Temperature Control Optimizer (TEMP_OPT)

	13 Online and Diagnostic Tools
	1. Status LEDs
	1.1 Status LEDs on a CPU

	2. Going online and connecting to a CPU
	3. Displaying the status of the CPU
	4. Setting the date and time of day
	5. Displaying or setting CPU configuration
	6. Resetting to factory settings
	6.1 Procedure
	6.2 Result

	7. CPU operator toolbar for the online CPU
	8. Monitoring and modifying values in the CPU
	8.1 Going online to monitor the values in the CPU
	8.2 Displaying status in the program editor
	8.3 Using a watch table to monitor and modify values in the CPU

	9. Recovery from a lost password
	10. Runtime Exceptions
	11. CPU registers

