INTELART

Robust in Automation

15H500 v1.0

HMC (HMI+PLC) Device

Technical Manual www.intelart.ir
08/2021

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

DANGER

Indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING

Indicates that death or severe personal injury may result if proper precautions are not taken.

NOTICE

Indicates that property damage can result if proper precautions are not taken.

Qualified personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions.

Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems

I

Contents

W	/arn	ning	noti	ce system	l
				sonnel	
				al Specifications	
_	1.1			dware Parameters	
2				rations	
_	2.1			tal Inputs	
	2.2			tal Outputs	
2.3				nory Storages	
	2.4	ļ	Com	munications	10
	2.4 2.4		1	RS-485	10
			2	CAN	10
	,	2.4.	3	Ethernet	11
3	ļ	Diag	nost	tic and Wiring	12
4	ļ	Dim	ensi	onal drawing	14

1 Technical Specifications

1.1 Hardware Parameters

The following table specifies the hardware information of the module.

Table 1 Hardware parameters

Performance	Processor	Arm Cortex M7, 480MHz	
	Bit operation	6 μs	
	Word operation	6 μs	
	Single Floating-point Operation	6 μs	
	Double Floating-point Operation	6 μs	
	CPU startup modes	Cold start, Warm start	
	Configurable startup mode	Yes	
Memory	Load memory	16 MB	
	Application memory	128 KB	
	Retentive memory	4KB	
	M area memory	32 KB	
	I area memory	16 KB	
	Q area memory	16 KB	
	G area memory	32 KB	
	Permanent memory	16KB	
	SD card memory	Up to 32GB	
I/O Expansion	Supported modules	4, IM2XX Series	
	Max digital I/O count	64	
	I/O integrated in CPU	No	
	Emergency stop trigger	Yes	
Device	IEC-61131 data types	Yes	
Elements	Arrays	Yes	
	Structures	Yes	
	User custom data type	Yes	
	Number of Tags	2048	

	Number of Organization Blocks	Cyclic Programs: 1		
	(OBs)	Periodic Interrupts: 4		
		 Startup Programs: 1 		
		Stop Interrupts: 1		
		 Emergency Stop Interrupts: 1 		
		Time Of Day Interrupts: 1		
	Number of functions (FCs)	32		
	Number of function blocks (FBs) Number of screens	16 16		
	Number of elements per screen	64		
	Basic drawings	Yes		
	Image	Yes		
	Button	Yes		
	Textbox	Yes		
	ComboBox	Yes		
	CheckBox	Yes		
	Switch	Yes		
	LightIndicator	Yes		
	LevelIndicator	Yes		
	Slider	Yes		
	Multilmage	Yes		
	Datagrid	Yes		
	Trend HMI element event handlers	Yes Yes		
Engineering	Configuration / programming	Intelart Studio		
Liigiiieeiiiig	Software	intelait Stadio		
	Programming languages	LAD, FBD		
Display	Design of display	TFT		
	Number of colors	65000		
	MTBF backlighting (at 25 °c)	80000 h		
	Backlight dimmable	Yes, 0-100 %		
	Screen diagonal	5 in		
	Resolution WxH(pixels)	800 x 480		
	Display size WxH	108 x 66 mm		
Acoustics	Design as touch screen Buzzer	Yes Yes		
Acoustics	Speaker	No		
Interfaces	Number of RS-485 interfaces	1 (Isolated) 115200 bps		
	Number of RS-232 interfaces	0		
	Number of CAN interfaces	1, 1 Mbps		
	Number of Ethernet interfaces	1, 10/100 Mbps		
	Programming port	Ethernet		
Isolated	Voltage range	18 - 30V		
Power	Current range	300 - 700mA		
Dimensions	Front panel WxH	150 x 112 mm		
	Installation cutout WxHxD	142 x 105 x 50 mm		
	Storage temperature	-15 to 75 °C		

Ambient	Operating temperature	0 to 55 °C	
Conditions	Relative humidity	Max 90 %, No Condensation	
Miscellaneous	Weight	Approx. 900g	
	Led indications	Yes. RUN: Green, STOP: Orange, FAULT: Red	
	Front panel protection	IP 65	
	Rear protection	IP 20	
	Backup battery lifetime	5 Years typical	

2 Configurations

2.1 Digital Inputs

There is one digital input on the device as an emergency stop trigger. The EmergencyStop OB will execute (if present) when a 24V signal applied to this input.

2.2 Digital Outputs

The device has no digital output.

2.3 Memory Storages

This device uses several memory storages for different purposes. Each storage has a specific duty and should be considered by user.

Load memory

The load memory is a non-volatile memory for code blocks, user data, prebuild objects, media objects and hardware configuration. When these objects are downloaded to the CPU they are first saved into load memory. This memory is located on the device itself.

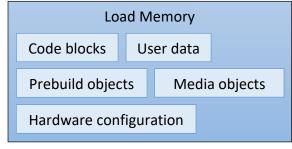


Figure 1 Load memory illustration

Application memory

The application memory is a volatile memory that contains the code and data structures. The application memory is integrated into the CPU and cannot be extended or moved. This memory also contains runtime-relevant parts of the program code.

Retentive memory

Retentive memory is a non-volatile memory for saving a limited quantity of data in the event of power failure. The tags that have been defined as retain are saved in retentive memory. These data is retained beyond a power-off or power failure. All other program tags are lost under these conditions and are set to their default values upon the operating mode transitions POWER ON to startup, and STOP to startup.

The content of retentive memory is deleted by the following actions:

- Memory reset because of a Cold Start
- Backup battery removal

NOTE

The low voltage in the backup battery causes the device to run in Cold Start mode.

M area memory

The **M** area memory is a volatile memory that contains all tags defined in external tag tables with an address starting by '%M' notation. This area mostly uses for communication protocols between devices such as Modbus, CAN etc. or some cases that a memory overlapping procedure is needed. Also this memory is usable for general programming.

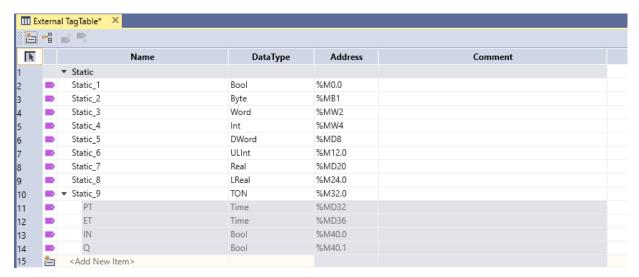


Figure 2 Defining tags in M area in an external tag table

I and Q area memory

The I and Q area memory is a volatile memory that contains all tags defined in external tag tables with an address starting by '%I' and '%Q' notation respectively. This area contains the values of all input/output areas of connected modules or the CPU itself. Addressing of I and Q area tags is a bit different from M area tags. All I and Q area tags address starts by a number that indicates the physical address of that area.

Example: the second digital input in the first module address will be %I0.0.1 that indicates:

first module → second bit in first input byte

NOTE

In cases where the device has input area the CPU index will be 0 and modules index will be started by 1.

After the device is configured, in programming software > Plant Explorer > Device Configuration window all installed modules will be accessible.

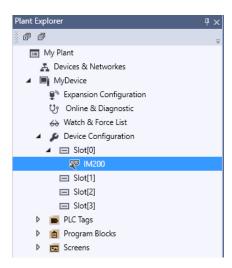


Figure 3 an installed module view in Plant Explorer window

Each module has a list that contains all I and Q tags with their physical address. By double click on the selected module the tags description list will be opened. There is a wizard in the list that can create all needed tags with their absolute address in an external tag table.

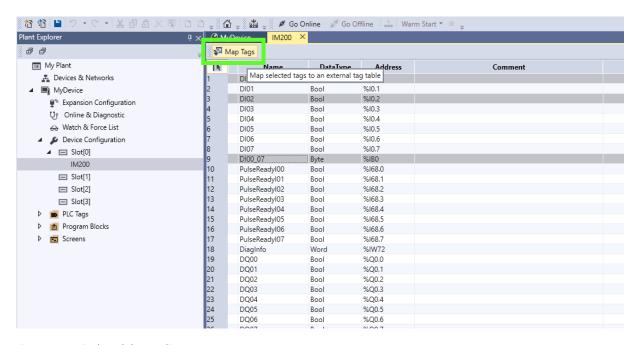


Figure 4 A typical module tags list

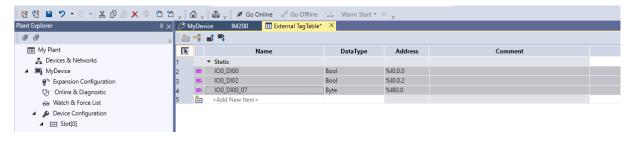


Figure 5 Created I area tags that refering the first physical module

G area memory

The **G** area memory is a volatile memory that contains tags with different features from M area memory. These tags define in a global tag table (such as Default Tag Table) and can start with a user specified default value. There is no need to assign an address for a tag that defined in this area. The compiler calculates the correct address in compile time for G area and retained tag storages. Any tag of any data type in a global tag table can be marked as **Retain**. The retain tags value will be stored in retentive storage.

NOTE

Any change in retain storage arrangement such as add/remove a retain tag or changing default value of a retain tag will be caused a **Cold Start** at the next startup of device after downloading user program to the CPU.

Constant tags store in **G** area and their values never change after downloading program to the CPU.

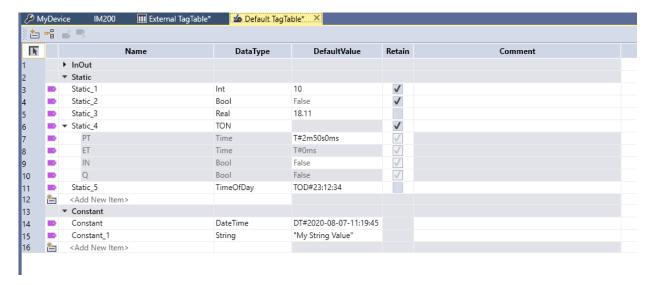


Figure 6 a typical global tag table

NOTE

All defined tags in **M**, **I** and **Q** areas will start by IEC-61131 default values on a CPU start until the user program or CPU change those tag values.

Permanent memory

The permanent memory is a storage space for using in applications that need to keep the value of tags permanently and not be erased even on a Cold Start condition. Reading from or writing to this memory is different because of its EEPROM nature. There is an instruction in order to read from or write to this memory. You can write any type of data on this memory and read them back again.

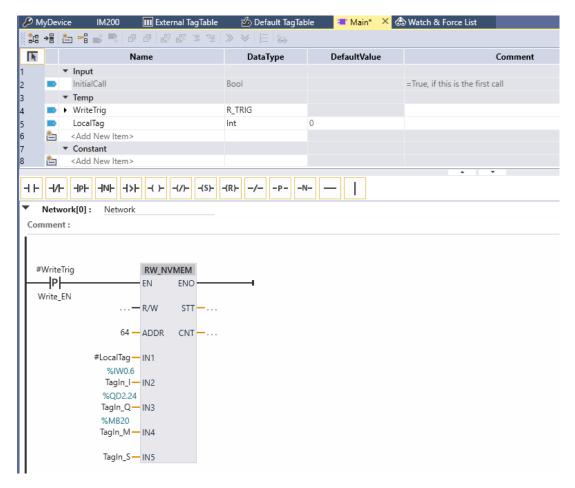


Figure 7 Reading/writing on permanent memory

WARNING

Writing on this memory cells is guaranteed until one million times. Use this memory only for saving configurations, important data or any type of data that does not need to be write frequently. For example, if the scan time of the CPU is 20 ms and a value was saved once per scan, the EEPROM would last a minimum of 20,000 seconds, which is less than 6 hours. On the other hand, if a value were saved once an hour, the EEPROM would last a minimum of 114 years. Typically, you should perform save operations at the occurrence of specific events that occur rather infrequently.

SD card memory

Your controller program can store process values in Data Logs using the Data Logging instructions. The Data Logs are saved in csv format in the directory of the SD memory card. The Data Logging instructions are used in your program to create, open and write Data Logs and to close Data Logs. You decide which tags are to be logged by incrementing or decrementing the inputs of the instruction. You can execute "F_LOG" instruction to add a row of new values to the csv file.

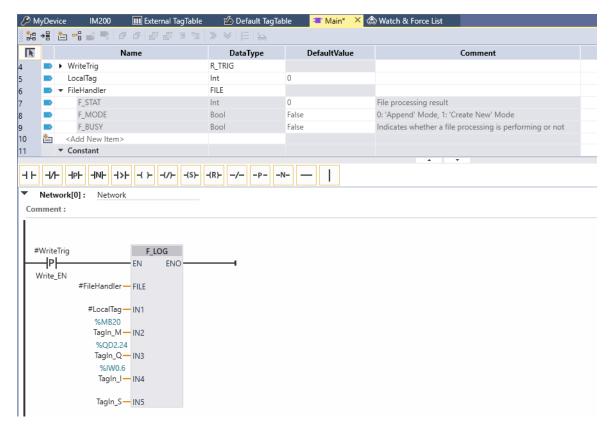


Figure 8 Data logging on SD card

2.4 Communications

2.4.1 RS-485

This device provides a single RS-485 port for connection to the network. The port is electrically isolated from bus. As shown in Table 7-5, the maximum length of a network segment is determined by two factors:

Isolation (using an RS-485 repeater) and baud rate.

Isolation is required when you connect devices at different ground potentials. Different ground potentials can exist when grounds are physically separated by a long distance. Even over short distances, load currents of heavy machinery can cause a difference in ground potential.

Supported baud rates for the RS-485 port can vary from 1200 to 115200 b/s.

2.4.2 CAN

This device provides a single CAN port for connection to the network. You use this port for sending and receiving CAN messages on a multi master CAN network. Supported baud rates for the CAN port is a maximum of 1000 kb/s for a 40 m length CAN bus.

2.4.3 Ethernet

The I5H500 can be remotely configured, programmed and diagnosed via Ethernet using Intelart Studio. Also the device can communicate with another devices via Ethernet. Ethernet can be implemented to offer a wide range of application specific uses, such as switching, high-speed SCADA, fast connects, and redundant networks.

3 Diagnostic and Wiring

There is 1 LED indicating the status of the device. The following table explains the states of the LED.

Table 2 Combination of "POWER" and "MAINT" LEDs

	Indicating	Solution
Off	Power missing or hardware failure.	Check the main power supplyVerify that the power connector is installed correctly
On	The device is configured and is in RUN mode.	
On	The device is in stop mode	
On	The device has an error (communication error, runtime error etc.)	 Verify that all communication and hardware configuration is identical in the defined values in Intelart Studio. Check the user program if it generates a runtime error

The following block diagram shows you information about wiring of the device.

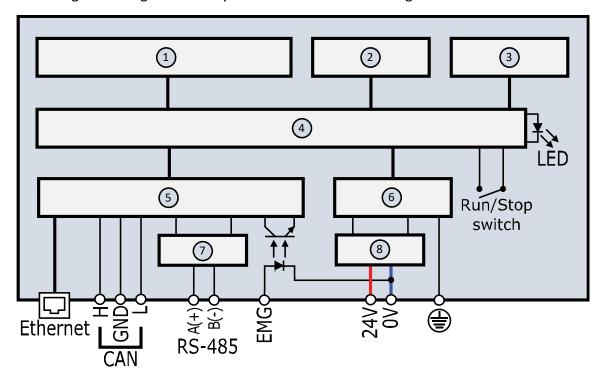
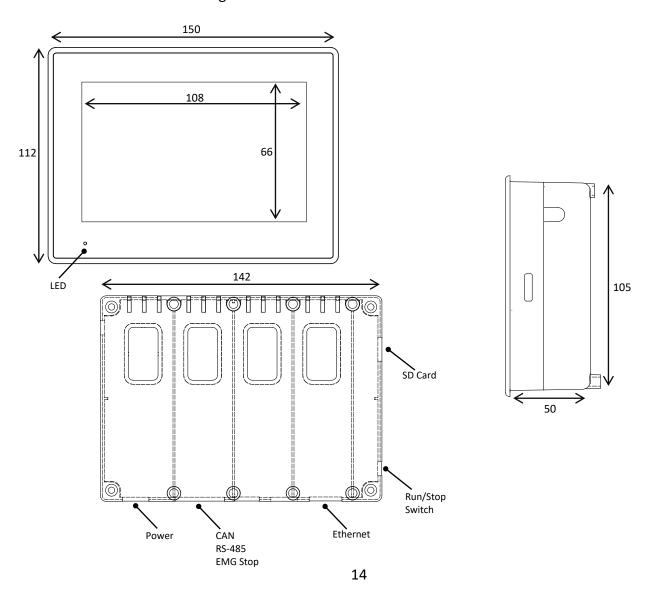


Figure 9 Wiring diagram and terminal assignments


- 1) I/O module slots
- 2 SD card driver
- 3 LCD & touch panel
- (4) CPU

- 5 Communication unit
- 6 Power unit
- **7** RS-485 magnetic isolator
- 8 Power isolator

4 Dimensional drawing

The dimensions of the device are available in this section. For install the device follow the below dimensional drawing.

